GCSE Computer Science Topic 1.2 Memory and Storage (3)

Each 1 or 0 is a bit. Short for **bi**nary digit.

1. Bit

2. Nibble

3. Byte

4. Kilobyte

5. Megabyte6. Gigabyte

7. Terabyte

8. Petabyte

There are **8** bits in a **byte**Then **1000** of each smaller unit in each bigger unit.

† Byte | 1 Warryto (120) | 1 Magallyto (ME) | 1 Gagallyto (GB) | 1 Tecklyto (TB) | 7 Potabyto (TB) | 1 DOD System | 1000 System

Check digits are a way of checking that data has been **entered** and **read** correctly.

They are digits added to the **end** of numbers. If the check digit is correct when the data is read, it is **likely** the data has been entered/read correctly. For binary data, the check digit is called a **parity** bit.

- You can have **odd** and **even** parity bits.
- An even parity bit is added to make the binary string have an even number of 1s.
- An odd parity bit is added to make a binary string have an odd number of 1s.

Number 1	0	0	0	1	1	1	0	1
Number 2	1	0	0	1	1	0	1	1
Answer	1	0	1	1	1	0	0	0
Carry	0	0	1	1	1	1	1	

First, draw this table, then write in your him number 87 into domary.

15 First, draw this table, then write in your him number.

16 1 8 7

25 Multiply the number in each solution.

18 15 128 7 117

26 Add up the results.

19 126 + 7 + 195

27 So the has number 57 is 105 in dimary.

Sometimes when doing binary **addition**you get a result that requires <u>more bits</u> than the CPU is
expecting. This is called an **overflow error**

Left shafts MULTIPLY a binary number.
For every place shifted left, the number is doubled.

Right shifts DIVIDE a binary number.
For every place shifted right, the number is habed.

BINARY

1

10

11

100

101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

DEN

1

2

3

5

6

9

10

11

12

13

14

HEX

0

1

2

3

4

5

6

7

8

9

A

В

C

D

Ε

Overflow errors result in loss of data ond the results ore inaccurate

A binary shift (or logical shift) moves every bit in a binary number either left or right a certain number of places.

Gaps at the beginning or end of a number, after a shift are filled with 0s.

Left shifts can cause overflow errors and right shifts can cause digits to 'drop off' the end.

Bits dropping off or overflowing can cause loss of accuracy or loss of data.

- ✓ Its easier to remember large numbers in HEX.
- ✓ Because HEX is shorter there are less chance of typing errors.
- ✓ Its easier to convert between binary&hex than binary and denary.

Analogue signals are converted to digital signals so that they can be processed by a computer.

This process is called sampling.

Sample intervals	Sample frequency	Sample size/depth	Bit rate
The time gap between taking a sample.	How many samples are taken in a second.	How many bits are available to store each sample.	Number of bits used per second of audio.
e.g. sound may be sampled every 5 milliseconds Sample interval	e.g. 44.1khz means 44,100 samples are taken per second.		Bit rate * sampling frequency * sample size.

Increasing any of the above means better quality but larger file size.

Character set: A collection of characters that a computer recognises from their binary representation.

ASCII - Uses 7 bits – this means it can represent 128 characters. (2^7 = 128)

EXT ASCII: Uses 8 bits – allowing 256 characters to be represented $(2^8 = 256)$.

Unicode uses 16-32 bits -2^16 bit (65, 536) 2^32 bit (4,294, 967,296) *Unicode covers ALL major languages.*

Bitmap images are made up of tiny little dots called pixels. The colour of each pixel is

represented by a binary code.

More colours = more bits (longer binary code)

Colour depth: the number of bits used for each pixel.

MORE COLOURS = BETTER QUALITY BUT LARGER FILE.

Resolution - how many pixels are in an area of the image – measured in dpi (dots per inch)

MORE DOTS, MORE BINARY = LARGER FILE.

Metadata is the data stored in an image file which helps the computer recreate the image on screen. File format, height, width, colour-depth and resolution, time/date/location image was taken.

WITHOUT METADATA, DEVICES WOULD NOT BE ABLE TO DISPLAY IMAGES.

GCSE Computer Science - Topic 1.2 Data representation (3)

What I need to know:

Define the term bit.					
How many bits are in a byte?					
Order the binary units from smallest to largest.					
Explain, with an example how to convert a number from denary into binary.					
Explain, with an example, how to convert a number from binary to denary.					
Define the terms check digit / parity bit.					
Explain with examples how odd and even parity bits are used.					
Demonstrate how to perform binary addition.					
Explain with examples, how to convert binary into hexadecimal.					
Explain with examples how to convert hexadecimal into binary then to denary.					
Define the term overflow error.					
Explain with examples, how to perform binary shifts.					
What are the benefits of using the hexadecimal number system.					
Explain the process of sampling.					
Explain the factors that affect the size and quality of a digital sound file.					
Define the term character set.					
Explain the key differences between ASCII, extended ASCII and Unicode.					
Explain how images are represented on a computer system using the terms colour depth and resolution.					
Define the term metadata.					