

	AQA Chemistry (8462) from 2016 Topics C4.1 Atomic structure and the periodic table			
Topic	Student Checklist	R	Α	G
	State that everything is made of atoms and recall what they are			
	Describe what elements and compounds are			
ass	State that elements and compounds are represented by symbols; and use chemical symbols and			
εu	formulae to represent elements and compounds			
ü	Write word equations and balanced symbol equations for chemical reactions, including using			
ato	appropriate state symbols			
ve	HT ONLY: Write balanced half equations and ionic equations			
lati es	Describe what a mixture is			
, re	Name and describe the physical processes used to separate mixtures and suggest suitable separation			
ols sot	techniques			
dm i br	Describe how the atomic model has changed over time due to new experimental evidence, inc discovery			
, sy e ai	of the atom and scattering experiments (inc the work of James Chadwick)			
om, arg	Describe the difference between the plum pudding model of the atom and the nuclear model of the			
ato cha	atom	<u> </u>		ļ
odel of the atom, symbols, relat electronic charge and isotopes	State the relative charge of protons, neutrons and electrons and describe the overall charge of an atom	<u> </u>		ļ
of t tro	State the relative masses of protons, neutrons and electrons and describe the distribution of mass in an			
del lec	atom	<u> </u>		
e e	Calculate the number of protons, neutrons and electrons in an atom when given its atomic number and			
le r	mass number	<u> </u>		
du	Describe isotopes as atoms of the same element with different numbers of neutrons	<u> </u>		
4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes	Define the term relative atomic mass and why it takes into account the abundance of isotopes of the			
.1.	element	<u> </u>		
4.1	Calculate the relative atomic mass of an element given the percentage abundance of its isotopes	<u> </u>		
	Describe how electrons fill energy levels in atoms, and represent the electron structure of elements			
	using diagrams and numbers	<u> </u>	<u> </u>	
	Recall how the elements in the periodic table are arranged	+	<u> </u>	
	Describe how elements with similar properties are placed in the periodic table	+	<u> </u>	
	Explain why elements in the same group have similar properties and how to use the periodic table to predict the reactivity of elements			
	Describe the early attempts to classify elements			
e	Explain the creation and attributes of Mendeleev's periodic table			
iodic table	Identify metals and non-metals on the periodic table, compare and contrast their properties			
lic t	Explain how the atomic structure of metals and non-metals relates to their position in the periodic table	<u> </u>		
iod	Describe nobl4 gases (group 0) and explain their lack of reactivity	<u> </u>		
per	Describe the properties of noble gases, including boiling points, predict trends down the group and	<u> </u>		
he	describe how their properties depend on the outer shell of electrons			
2 Т	Describe the reactivity and properties of group 1 alkali metals with reference to their electron			
4.1.2 The per	arrangement and predict their reactions			
7	Describe the properties of group 7 halogens and how their properties relate to their electron			
	arrangement, including trends in molecular mass, melting and boiling points and reactivity			
	Describe the reactions of group 7 halogens with metals and non-metals			
	Chem ONLY: Describe the properties of transition metals and compare them with group 1 elements,			
	including melting points and densities, strength and hardness, and reactivity (for CR, Mn Fe, Co, Ni & Cu)			

Personalised Learning Checklists AQA Chemistry Paper 1

opic	AQA Chemistry (8462) from 2016 Topics C4.2 Bonding, structure, and the properties of matter Student Checklist	R	Α	(
	Describe the three main types of bonds: ionic bonds, covalent bonds and metallic bonds in terms of			F
	electrostatic forces and the transfer or sharing of electrons			
4.2.1 Chemical bonds, Ionic, covalent and metallic	Describe how the ions produced by elements in some groups have the electronic structure of a noble gas			t
era	and explain how the charge of an ion relates to its group number			
	Describe the structure of ionic compounds, including the electrostatic forces of attraction, and represent			t
	ionic compounds using dot and cross diagrams			
	Describe the limitations of using dot and cross, ball and stick, two and three-dimensional diagrams to			t
	represent a giant ionic structure			
5	Work out the empirical formula of an ionic compound from a given model or diagram that shows the			ł
5	ions in the structure			
	Describe covalent bonds and identify different types of covalently bonded substances, such as small			ł
5	molecules, large molecules and substances with giant covalent structures			
				ł
2	Represent covalent bonds between small molecules, repeating units of polymers and parts of giant			l
	covalent structures using diagrams			ł
	Draw dot and cross diagrams for the molecules of hydrogen, chlorine, oxygen, nitrogen, hydrogen			l
	chloride, water, ammonia and methane			
	Deduce the molecular formula of a substance from a given model or diagram in these forms showing the			
	atoms and bonds in the molecule			ł
	Describe the arrangement of atoms and electrons in metallic bonds and draw diagrams the bonding in			l
	metals			ļ
5	Name the three States of matter, identify them from a simple model and state which changes of state			
}	happen at melting and boiling points			ļ
	Explain changes of state using particle theory and describe factors that affect the melting and boiling			
2	point of a substance			ļ
<u>2</u>)	HT ONLY: Discuss the limitations of particle theory			ļ
;	Recall what (s), (l), (g) and (aq) mean when used in chemical equations and be able to use them			l
2	appropriately			
	Explain how the structure of ionic compounds affects their properties, including melting and boiling			l
5	points and conduction of electricity (sodium chloride structure only)			
ies :	Explain how the structure of small molecules affects their properties			
substances	Explain how the structure of polymers affects their properties			
ost	Explain how the structure of giant covalent structures affects their properties			Ī
sul	Explain how the structure of metals and alloys affects their properties, including explaining why they are			Ī
	good conductors			
5	Explain why alloys are harder than pure metals in terms of the layers of atoms			Ī
5 0	Explain the properties of graphite, diamond and graphene in terms of their structure and bonding			Ī
5	Describe the structure of fullerenes, and their uses, including Buckminsterfullerene and carbon			t
5	nanotubes			l
2	<i>Chem ONLY: Compare the dimensions of nanoparticles to other particles and explain the effect of their</i>			t
5	surface area to volume ratio on their properties			ļ
substances	Chem ONLY: Discuss the applications of nanoparticles and their advantages and disadvantages, including			t
ļ	uses in medicine, cosmetics, fabrics and the development of catalysts			I

	AQA Chemistry (8462) from 2016 Topics C4.3 Quantitative chemistry			
Торіс	Student Checklist	R	Α	G
	State that mass is conserved and explain why, including describing balanced equations in terms of conservation of mass			
4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation	Explain the use of the multipliers in equations in normal script before a formula and in subscript within a formula			
neasu f mass nterpr	Describe what the relative formula mass (Mr) of a compound is and calculate the relative formula mass of a compound, given its formula			
mical I tion o ative i	Calculate the relative formula masses of reactants and products to prove that mass is conserved in a balanced chemical equation			
.1 Che nserva uantit	Explain observed changes of mass during chemical reactions in non-enclosed systems using the particle model when given the balanced symbol equation			
4.3 col q	Explain why whenever a measurement is made there is always some uncertainty about the result obtained			
ce in ances	HT ONLY: State that chemical amounts are measured in moles (mol) and explain what a mol is with reference to relative formula mass and Avogadro's constant			
4.3.2 Use of amount of substance in relation to masses of pure substances	HT ONLY: Use the relative formula mass of a substance to calculate the number of moles in a given mass of the substance			
if su ure	HT ONLY: Calculate the masses of reactants and products when given a balanced symbol equation			<u> </u>
ito fp	HT ONLY: Use moles to write a balanced equation when given the masses of reactants and			
our ss c	products (inc changing the subject of the equation)			ļ
ame	HT ONLY: Explain the effect of limiting the quantity of a reactant on the amount of products in			
ofe	terms of moles or masses in grams			
to se	Calculate the mass of solute in a given volume of solution of known concentration in terms of mass			
D Z U	per given volume of solution			
4.3.3 relati	HT ONLY: Explain how the mass of a solute and the volume of a solution is related to the concentration of the solution			
ıy of	Chem ONLY: Explain why it is not always possible to obtain the calculated or expected amount of a product			
conom	Chem ONLY: Calculate the theoretical amount of a product and percentage yield of a product using the formula % yield = mass of product made/max theoretical mass of product x 100			
and atom econ mical reactions	Chem & HT ONLY: Calculate the theoretical mass of a product from a given mass of reactant and the balanced equation for the reaction			
and atom economy of mical reactions	Chem ONLY: Describe atom economy as a measure of the amount of reactants that end up as useful products			
4.3.3 Yield che	Chem ONLY: Calculate the percentage atom economy of a reaction to form a desired product using the equation % atom economy =RfM of desired product/sum of RfM of all reactants x 100			
3.3	Chem & HT ONLY: Explain why a particular reaction pathway is chosen to produce a specified			
4.	product, given appropriate data			
s of	Chem & HT ONLY: Calculate the amount of solute (in moles or grams) in a solution from its concentration in mol/dm ³			
ions m³	Chem & HT ONLY: Calculate the concentration of a solution when it reacts completely with another			
i/d	solution of a known concentration			
ncent in mo	Chem & HT ONLY: Describe how to carry out titrations of strong acids and strong alkalis and calculate quantities in titrations involving concentrations in mol/dm ³ and g/dm ³			
4.3.4 Using concentrations of solutions in mol/dm ³	Chem & HT ONLY: Explain how the concentration of a solution in mol/dm3 is related to the mass of			
Usi olut	the solute and the volume of the solution Chem & HT ONLY: Explain what the volume of one mole of any gas at room temperature is			
.3.4 sı	Chem & HT ONLY: Calculate the volume of a gas at room temperature and pressure from its mass			
4	and relative formula mass			L

	AQA Chemistry (8462) from 2016 Topics C4.4 Chemical changes			
Topic	Student Checklist	R	Α	G
	Describe how metals react with oxygen and state the compound they form, define oxidation and reduction			
4.4.1 Reactivity of metals	Describe the arrangement of metals in the reactivity series, including carbon and hydrogen, and use the reactivity series to predict the outcome of displacement reactions			
	Recall and describe the reactions, if any, of potassium, sodium, lithium, calcium, magnesium, zinc, iron and copper with water or dilute acids			
	Relate the reactivity of metals to its tendency to form positive ions and be able to deduce an order of reactivity of metals based on experimental results			
l.1 Re	Recall what native metals are and explain how metals can be extracted from the compounds in which			
4.4	they are found in nature by reduction with carbon Evaluate specific metal extraction processes when given appropriate information and identify which			
	species are oxidised or reduced			
	HT ONLY: Describe oxidation and reduction in terms of loss and gain of electrons			
	HT ONLY: Write ionic equations for displacement reactions, and identify which species are oxidised			
	and reduced from a symbol or half equation			
	HT ONLY: Explain in terms of gain or loss of electrons that the reactions between acids and some metals are redox reactions, and identify which species are oxidised and which are reduced (Mg, Zn, Fe + HCl & H ₂ SO ₄)			
	Explain that acids can be neutralised by alkalis, bases and metal carbonates and list the products of each of these reactions			
	Predict the salt produced in a neutralisation reaction based on the acid used and the positive ions in the			
	base, alkali or carbonate and use the formulae of common ions to deduce the formulae of the salt			
	Describe how soluble salts can be made from acids and how pure, dry samples of salts can be obtained			
4.4.2 Reactions of acids	Required practical 1: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the			
	solution Recall what the pH scale measures and describe the scale used to identify acidic, neutral or alkaline solutions			
1.2 Rea	Define the terms acid and alkali in terms of production of hydrogen ions or hydroxide ions (in solution), define the term base			
4.7	Describe the use of universal indicator to measure the approximate pH of a solution and use the pH scale to identify acidic or alkaline solutions			
	Chem ONLY: Describe how to carry out titrations using strong acids and strong alkalis only (sulfuric, hydrochloric and nitric acids to find the reacting volumes accurately			
	Chem & HT ONLY: Calculate the chemical quantities in titrations involving concentrations in mol/dm ³ and in g/dm ³			
	Chem ONLY: Required practical 2: determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration			
	HT ONLY: Use and explain the terms dilute and concentrated (in terms of amount of substance) and			
	weak and strong (in terms of the degree of ionisation) in relation to acids			
	HT ONLY: Explain how the concentration of an aqueous solution and the strength of an acid affects the pH of the solution and how pH is related to the hydrogen ion concentration of a solution			ĺ
	Describe how ionic compounds can conduct electricity when dissolved in water and describe these			
	solutions as electrolytes			
.s	Describe the process of electrolysis			
olys	Describe the electrolysis of molten ionic compounds and predict the products at each electrode of the			ĺ
ctr	electrolysis of binary ionic compounds			
4.4.3 Electrolysis	Explain how metals are extracted from molten compounds using electrolysis and use the reactivity series to explain why some metals are extracted with electrolysis instead of carbon			
4.3	Describe the electrolysis of aqueous solutions and predict the products of the electrolysis of aqueous			
4	solutions containing single ionic compounds			1
	Required practical 3: investigate what happens when aqueous solutions are electrolysed using inert			
	electrodes			

Personalised Learning Checklists AQA Chemistry Paper 1

HT ONLY: Describe the reactions at the electrodes during electrolysis as oxidation and reduction reactions and write balanced half equations for these reactions

	AQA Chemistry (8462) from 2016 Topics C4.5 Energy changes			
Торіс	Student Checklist	R	Α	G
s	Describe how energy is transferred to or from the surroundings during a chemical reaction			
Exothermic and hermic reactions	Explain exothermic and endothermic reactions on the basis of the temperature change of the			
acti	surroundings and give examples of everyday uses			
	Required practical 4: investigate the variables that affect temperature changes in reacting solutions			
4.5.1 Exothe endothermic	Describe what the collision theory is and define the term activation energy			
Exo	Interpret and draw reaction profiles of exothermic and endothermic reactions, inc identifying the			
.1 oth	relative energies of reactants and products, activation energy and overall energy change			
4.5.1 endot	HT ONLY: Explain the energy changes in breaking and making bonds and calculate the overall energy			
U	change using bond energies			
σ	Chem ONLY: Describe what a simple cell and a battery is and how they produce electricity			
an	Chem ONLY: Describe why alkaline batteries are non-rechargeable, state why some cells are			
cells Is	rechargeable and evaluate the use of cells			
Chemical cells and fuel cells	Chem ONLY: Describe fuel cells and compare fuel cells to rechargeable cells and batteries			
2 Cher fu	Chem ONLY: Describe the overall reaction in a hydrogen fuel cell			
4.5.2	Chem & HT ONLY: Write half equations for the electrode reactions in a hydrogen fuel cell			