

Calculation Policy

EYFS			
Number - addition and subtraction		Number - multiplication and division	
add two single digit numbers aggregation Counters on plates Bead strings or bead bars can be used to illustrate addition including bridging ten by counting on 2 then 3. $5+3=8$ 12345678 $5 \quad 678$ Count on to find the answer augmentation Practically with objects, fingers etc. $5+2$ "Put 5 in your head, 6, 7." On a prepared number line (start with the bigger number)... $2+4=6$	subtract two single digit numbers reduction Counters on plates 6 take away 1 leaves $1,2,3,4,5$ Cross out drawn objects to represent what has been taken away: 3 take away 2 is 1 Start with 3 ... 2, 1. Count on or back to find the answer Practically, for example: Group objects on a table then cover some to visualize the calculation: 2 less than 4 is 2 Start with 2... 3, 4. Coins I had 10 pennies. I spent 4 pence. How much do I have left? Start with $10 \ldots$... 9, 8, 7, 6.	solve problems including doubling Practically double a group of objects to find double of a number by combining then counting the two groups: Double 4 is 8 . is 10	solve problems including halving and sharing Sharing objects One for you. One for me... Is it fair? How many do we each have? 15 shared between 5 is 3 . Grouping objects Put groups of objects on plates. How many groups of 4 are there in 12 stars?
understand and use vocabulary for addition add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more... how many more to make...? how many more is... than...? is the same as	understand and use vocabulary for subtraction take (away), leave, how many are left/left over? how many have gone? one less, two less... ten less... how many fewer is... than...? difference between is the same as	understand and use vocabulary for multiplication count on (from, to), count back (from, to), count in ones, twos... tens... is the same as	understand and use vocabulary for division half, halve, count out, share out, left, left over is the same as

\qquad

Number - multiplication and division


```
Solve problems with addition:
    - using concrete objects and pictorial representations, including those involving
    appers, iqcentities and measures
    Useall the models
    Use all the models and images mentioned above. Discuss which is most
    Singapore Bar Method
    *
\(\rightarrow r\)
```

Solve problems with subtraction

- using concrete objects and pictorial representations, including those involving applying increasing knowleasure
hental and written methods

Use all the models and images mentioned above. Discuss which is most effective and why.

solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts
Use all the models and images mentioned above. Discuss which is most effective
and why.
Singapore Bar Method

solve problems involving division, using materials, arrays, repeated addition. mental methods, and division facts, including problems in contexts
Use all the models and images mentioned above. Discuss which is most effective and why
Singapore Bar Method

recognise and use the inverse relationship between multiplication and division and use this to solve missing number problems

$3 \times 5=15$	$15 \div 3=5$	
$5 \times 3=15$	$\bigcirc \bigcirc O$	
	$15 \div 5=3$	

show that multiplication of two numbers can be done in any order (commutative)
show that division of one number by another cannot be done in any order
show that addition of two numbers can be done in any order (commutative)

On a number line \quad| +1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 3 | 4 | 5 | 6 |

On a hundred square
$12+26=38$

On a number line
 $\begin{array}{lllllllll}+1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}$ $38-12=26 \quad$, \quad - $3=4$

$\begin{array}{llllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$
$\begin{array}{llllllllllll}21 & 22 & 23 & 24 & 25 & 26 & 26 & 28 & 28 & 29 & 30 \\ 31 & 32 & 33 & 34 & 35 & 36 & 37 & 37 & 38 & 39 & 40\end{array} \quad$ On a hundred square

check their calculations, including adding numbers in a different order to check addition (for example $5+2+1=1+5+2=1+2+5$) - establishing commutativity and associativity of addition
See models and images above.
recognise and use the inverse relationship between addition and subtraction and
use this to check calculations
See models and images above.
extend their understanding of the language of addition to include sum 4, add, more, plus, make, sum, total, altogether, score, double, near double, one more, two more... ten more, How many more to make. ? How many more is...
than .? How much more is.? Repetition of facts with different vocabulary "What is 2 odd 5 "" "What is 2 more than 5?" "What is 2 plus 5 ?" What is the total of 2 and 5 ?" etc = equals, sign, is the same as
check their calculations, including by adding to check subtraction
See models and images above.

recognise and use the inverse relationship between addition and subtraction and
use this to check calculations
See models and images above.
extend their understanding of the languge of subtraction to include difference

extend their understanding of the language of subtraction to include difference - subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less...ten less... one hundred less, how many fewer is... than... how $13+5=8$ Repetition of sentence with different vocabulary:
"13 subtract 5 equals 8 " " 5 less than 13 is 8
"13 take away 5 equals 8 " "The difference between 13 and 5 is 8 " etc = equals, sign, is the same as

$\square \square \square \square \square=\square$ เรีเロ
 $3 \times 5=15$

use commutativity and inverse relations to develop multiplicative reasoning (for e
Arrays - related facts

$$
\begin{aligned}
& 3 \times 5=15 \\
& 5 \times 3=15
\end{aligned}
$$

use a variety of language to describe multiplication

count on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens, lots of, groups of, x, times, mult tiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and
= equals, sign, is the same as

:::\%:
 $15 \div 3=5$ $15 \div 5=3$

use a variety of language to describe division Array, row, column, halve, share, share equally, one each, two each, three
each...group in pairs, threes... tens, equal groups of, \div divide, divided by, divided into, left, left over
$=$ equals, sign, is the same as

	Number - additio
add numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds	
Counting on $115+2$ -Put 115 in your head, 116, 117,"	Adding near numbers and adjusting $\begin{aligned} 433+90 & =433+100-10 \\ & =533-10 \\ & =523 \end{aligned}$
Partition number and recombine $\begin{aligned} 127+90 & =100+20+7+90 \\ & =10+110+7 \\ & =10+117 \\ & =217 \end{aligned}$	Count on by splitting units to make next multiple of ten/hundred $\begin{aligned} 360+80 & =360+40+40 \\ & =400+40 \\ & =440 \end{aligned}$
- two two-digit numbers (including answer crossing 100)	
Counting on with number lines $48+36=84+30$	Partition both numbers and recombine $\begin{aligned} 27+82 & =20+7+80+2 \\ & =100+9 \\ & =109 \end{aligned}$
Add the nearest multiple of 10 , then adjust	Count on by partitioning the second number only
$63+59$ is the same os $63+60-1$	$\begin{aligned} 36+93 & =93+30+6 \\ & =123+6 \\ & =129 \end{aligned}$

subtract numbers mentally, inclu - a three-digit number and ones - a three-digit number and tens - a three-digit number and hund	
Counting back: 263-5 -Put 263 in your head, 262, 261, 260. 259 . 258 ."	Use unprepared numbered lines to subtract, by counting back: $516-400=116$
Subtract mentally a near multiple of 10 to or from a two-digit	$\begin{array}{lllll}116 & 216 & 316 & 416 & 516\end{array}$
number: $678-90=678-100+10$	

- two two-digit numbers (including answer crossing 100)
recall and use multiplication facts for the 3,4 and 8 multiplication recall and use division facts for the 3,4 and 8 multiplication tables tables

Play games, chant, test etc to increase speed of recalling facts. \quad Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Make models and images to display fate
Investigate patterns within tables.

Investigate patterns within tobles.
understand and use mental methods using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)

Use a variety of resources (including a calculator) to investigate order of
multiplication.
Make models and images to display facts.
understand and use mental methods using multiplication a facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts (e.g. $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$)

$5 \times 30=150 \quad 50 \times 30=1500 \quad 30 \times 50=1500 \quad 150 \div 50=3$
add numbers with up to three digits, using formal written methods of columnar addition

Extend mental method of partitioning and recombining. $\begin{aligned} 158+72 & =100+(50+70)+(8+2) \\ & =100+120+10 \\ & =230 \end{aligned}$	Vertical expansio	$\begin{array}{r} 367 \\ \begin{array}{r} 385 \\ +185 \\ 140 \\ 140 \\ 450 \\ \hline 552 \end{array} \end{array}$
Column addition 187 $\frac{552}{11}$	$\begin{aligned} & 1.75 \\ & 4.25 \end{aligned}$ 1	
If children are experiencing persistent difficulties, they could use the parnitioneded column method with carrying (using Diennes for support): $200+40+6$ $\frac{300+20+6}{100}+2$		

subtract numbers with up to three digits, using formal written methods of columnar subtraction

Use base 10 (diennes) as a practical method to introduce exchanging
$31-18=13$

$$
\|\|\rightarrow\|\|^{f} \rightarrow \|^{i}
$$

When pupil(s) are confident in doing this practically and verbalizing When calculation, begin to record using partitioned column method:

$20{ }^{20}{ }^{1}$	When secure with exchanging, use
	partitioned column metho
$-10+8$	Calculationsinvolving
10	Repeating the practical stage if

Introduce Column Subtraction without decomposition:
$\begin{array}{r}458 \\ -\quad 232 \\ \hline 226\end{array}$
develop reliable written methods for multiplication, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication

Start by reinforcing mental methods of partitioning
$15 \times 2=30$

$13 \times 3=(10 \times 3)+(3 \times 3)$

Grid Method
Grid Method

1. Introduce the grid
method by linkkingit
2. Introduce the grid
method likingit to
arroys initiolly (using
$\begin{gathered}\text { arrays initial } \\ \text { counterss): } \\ 12 \times 3=36\end{gathered}$

$$
\begin{aligned}
& \text { 2. Us } \\
& \text { with } \\
& \text { suppece } \\
& \text { plo }
\end{aligned}
$$

2. Use base 10 (diernes) with grid method to to
support understanding of support unde
place value:

$=30+$
$=39$
develop reliable written methods for division, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short division

Use counters and a number line to support pupils understanding. Number lines
How many 3's make 18?
$\sim \sim$?
Hoops and dots
$16 \div 2=8 \quad \because \quad \because \quad$
Move on to calculations that leave emainders and/or require tables knowledge

When pupils have had experience with and demonstrated When pupils have had experience with and demonstrated
understanding of grouping for division, begin to look at short division understanding of grouping for division
with no remainders in the final answe
Use counters/Diennes to
Use counters/Diennes to
support understanding.

x	3
10	30
3	9
	39

Year 4

$2358+773$

Partition both numbers and recombine
$=2000+300+50+8+700+70+3$
$=2000+1000+120+11$
$=3000+100+30+1$
=3131
Partitioning with number lines

Partition second number only into hundreds, tens and ones and recombine
$2358+773=2358+700+70+3$
$=3058+70+3$
$=3128+3$
$=3131$
3131
Add the nearest multiple of 10 or
100, then adjust
$458+79=458+80-1$
add numbers with more than 4 digits, including using formal written methods
(columnar addition and subtraction)
Column addition

$$
\begin{array}{rr}
124.90 & \text { (add in a zero to keep } \\
+\underline{117.25} & \text { the place value) } \\
\frac{242.15}{11} &
\end{array}
$$

To ensure conceptual understanding, it is essential that place value is reinforced by frequently. Discuss the value of each digit.
Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value
Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value.
Children should be made aware that it is essential to align the columns carefully.

Pupils should be able
to add more than 2 numbers using the compact column method.
3.25
+413
+2.13
+0.76
$\frac{0.76}{8.14}$ $\frac{8.14}{11}$

Subtract the nearest multiple of 10 or
100 , then adjust

$\stackrel{10}{ }=162$

$$
\begin{aligned}
458-79 & =458-80+1 \\
& =378+1 \\
& =379
\end{aligned}
$$

Find a difference by counting up
8006-2993:5013

Use known number facts and place value to subtract (partition place value to subtract
second number only)
12 462-2300
$=12$ 462-2000-300
$=10462$ - 300
$=10162$

(300 -2000 methods (columnar addition and subtraction)
Revision of formal compact column method extending to calculations involving numbers with more than 4 involving numbers with more than
${ }^{2} 8^{10} x^{\prime} 00^{\prime \prime} 6$ $\begin{array}{r}8 x 0 \not 86 \\ 2128 \\ \hline\end{array}$ understanding of decomposition and place value).

When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed.

> | 5 \$1.1. 1 | $\begin{array}{l}\text { Use Diennes or place value } \\ \text { counters (add counters with 0.1) to }\end{array}$ |
| ---: | :--- |
| 263.0 | $\begin{array}{l}\text { support understanding of } \\ \text { su.5 }\end{array}$ |
| 236.5 | |

multiply num

$$
\begin{aligned}
& \text { Partition } \\
& \begin{aligned}
47 \times 6 & =(40 \times 6)+(7 \times 6) \\
& =(240)+(42) \\
& =282
\end{aligned}
\end{aligned}
$$

divide numbers mentally drawing upon known facts

Double and halve
$25 \times 16=50 \times 8=100 \times 4=200 \times 2=400$
multiply whole numbers and those involving decimals by 10,100 and 1000

Place Value

$\times 1000$

identify multiples, (and use them to construct equive $35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=2 \times 10$)

Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.

recall prime numbers up to 19

establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within primes.

recognise and use square n squared (${ }^{(2)}$ and cubed (${ }^{3}$)

Use a variety of resources (including a calculator) to investigate square and cubed numbers. Make models and images to display facts.
multiply numbers up to 4 digits by a one- or two-digit number using a forma
written method, including long multiplication for two-digit numbers
Review formal method of short multiplication (for multiplying by one digit numbers) when proficient

$$
\begin{array}{r}
452 \\
\times \quad 3 \\
\hline 1356 \\
\hline
\end{array}
$$

Start with grid method when multiplying by 2 digit numbers
72×38 is approximately $70 \times 40=2800$

\section*{$\begin{array}{r}2160 \\ 576\end{array}+$ | 5166^{+} |
| :---: |
| 2736 |
| 1 |}

Move onto formal long multiplication
$\begin{array}{r}34 \\ \times 13 \\ \hline 102 \\ 340 \\ \hline\end{array}$
$\frac{340}{442}$

Then formal multiplication with more complex numbers
$\begin{array}{r}1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 19744\end{array}$

```
Partitioning
72\div3=(60\div3)=(12\div3)
                =20+4
                            =24
```

divide whole
Place Value

identify factors, including finding all factor pairs of a number, and common factors of two numbers (and use them to construct equivaleence statements, e.g.
$4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$

Use a variety of resources (including a calculator) to investigate factors. Make models and images to display facts.
recall prime numbers up to 19
establish whether a number up to 100 is prim
Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts.
Investigate patterns within primes.
divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context (as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4$ $24 r^{2}=24 \frac{1}{2}=24.5 \approx 25$)

> 86 r 2 432 114.25

Pupils should consider whether remainders should be left as a reminder rounded to the nearest whole or converted into a decimal or fraction.

Introduce long division (dividing by single digits)
$256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$

256		
$-\frac{70}{186}$	(10 groups)	or (10×7)
$\frac{140}{46}$	(20 groups)	or (20×7)
$-\frac{42}{4}$	$\frac{(6 \text { groups })}{}$ or (36×7)	
$(36$ groups $)$ or (36)		

Use all the models and images mentioned above. Discuss which is most effective
and why and why.
Singapore Bar Method

use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check).
use a variety of language to describe addition

+ add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make.? tens boundary, hundreds boundary, units
boundary, tenths boundary inverse
= equals, sign, is the same as
solve subtraction multi-step problems in contexts, deciding which operation and methods to use and why
and why.
Singapore Bar Method

use rounding to check answers to calculations and determine, in the context of a

 problem, levels of accuracyEstimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check)
use a variety of language to describe subtraction

- subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than..? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and
divididing by powers of dividing by powers of a 10
metres metres

Use all the models and images mentioned above. Discuss which is most effective and why.
Singapore Bar Method

use and explain the equals sign to indicate equivalence, inc/uding missing number problems (e.g, $13+24=12+25 ; 33=5 \times[]$) problems (e.g, $13+24=12+25,3=5 \times[J]$
express distributivity, for example as $a(b+c)=a t a$ Use all of the models and images above to investigate a range of statements,
ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point.
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check).
use a variety of language to describe multiplication
know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers
lots of, groups of, times, multiply, multiplication, multiplied by, multiple of product, once, twice, three times... ten times... times as (big, long, wide... and so
on) on), repeated addition, array, row, column, double, inverse, prime,

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and
dividing by powers of diviaing by pown
metres metres
Use all the models and images mentioned above. Discuss which is most effectiv and why.
Singapore Bar Method

use and explain the equals sign to indicate equivalence, including missing number problems (e.g. $13+24=12+25 ; 33=5 \times[J$)

Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as
a starting point a starting point.
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check)
use a variety of language to describe division
Array, row, column, halve, share, share equally one each, two each, three each group in pairs, threes... tens, equal groups of, divide, division, divided by, divide
equals, sign, is the same as
perform mental calculations, including with mixed operations and large numbers (and decimals)

Partition both numbers into hundreds, tens, ones and decima fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =30+5+0.8+7+0.3 \\
& =30+12+1.1 \\
& =42+1.1 \\
& =43.1
\end{aligned}
$$

Partition second number only into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =35.8+7+0.3 \\
& =42.8+0.3 \\
& =43.1
\end{aligned}
$$

Add the nearest whole number then adjust $52+11.9=52+12-0.1$
$=64-0.1$
$=63.9$
practise addition for larger
methods of columnar addition

Extend the use of compact column method to adding several
numbers with_mixed decimals.

Children should be reminded of the importance of aligning the columns accurately.

Where there is an 'empty' space in a decimal column, pupils could insert a zero to show the value.
rt a zero to show
perform mental calculations,
large numbers(and decimals)
Use known number facts and place value to subtract

-0.4
Subtract the nearest whole number then adjust
$52-11.9=52-12+0.1$ $=40+0.1$ $=40.1$
-

large numb
perform mental calculations,
large numbers(and decimals)
Partitioning

$$
\begin{aligned}
4.7 \times 6 & =(4 \times 6)+(0.7 \times 6) \\
& =(24)+(4.2) \\
& =28.2
\end{aligned}
$$

Partitioning

$7.2 \div 3$	$=(6 \div 3)=(1.2 \div 3)$
	$=2+0.4$

Double and halve
$4.25 \times 32=8.5 \times 16$
$=17 \times 8$
$=34 \times 4$
$=68 \times 2$
$=136$
identify common factors, common multiples and prime numbers
Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication

Short multiplication and Long multiplication as in Year 5, but apply to numbers with decimals.

Pupils may need reminding that single digits belong in the ones (units) column.
A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication
identify common factors, common multiples and prime numbers
Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
divide numbers up to 4 digits by a two-digit whole number using the formal written method of short and long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Short division

Short division

$98 \div 7$ becomes
14
$7 \begin{aligned} & 98\end{aligned}$
Answer: 14
\qquad
$5 \longdiv { 4 3 ^ { 3 } 2 }$
Answer: 86 remainder 2
$496 \div 11$ becomes
45 r
1149

Answer: $45 \frac{1}{11}$
Long division (for dividing by 2 digits)

Long division

Remainders

Quotients expressed as fractions or decimal fractions $61 \div 4=15 \frac{1}{4}$ or 15.25

solve addition multi-step problems in contexts, deciding which operations and methods to use and why	solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why		
Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method
larger quantity smaller quantity smaller quantity + difference $=$ larger quantity	larger quantity smaller quantity larger quantity - smaller quantity $=$ difference	smaller quantity \times multiples $=$ larger quantity	
round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., (not to specified number of significant figures) Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $x 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction \times lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column double, inverse = equals, sign, is the same as	use a variety of language to describe subtraction Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse = equals, sign, is the same as

