		Year 13 A-leve	l Mathematics Curric	ulum Sequence		
Subject Intent: For	every learner to be con				matics, leaving school	with a solid
foundation of math	nematical skills, knowled	lge and understanding,	primed for their chose	en fields in the 21st cei	ntury.	
	Autumn Term 1	Autumn Term 2	Spring Term 1	Spring Term 2	Summer Term 1	Summer Term 2
Big idea/Theme	Probability	Statistical	Differentiation	 Integration 	Revision of all	External exam
	 Conditional 	distributions	 Numerical 	Moments	topics: Pure 1&2,	
	probability	 Hypothesis 	methods	 Forces and 	Statistics 1&2 and	
	 Correlation 	testing	Variable	friction	Mechanics 1&2	
	 Regression, 	 The normal 	acceleration	 Application of 		
	correlation and	distribution	• Further	forces		
	hypothesis testing	 Vectors 	kinematics			
	 Trigonometry 	 Modelling in 	 Forces and 			
	and modelling	mechanics	motion			
	 Parametric 	 Constant 				
	equations	acceleration				
	 Differentiation 	 Projectiles 				
		Variable				
		acceleration				
Knowledge that	Calculate	 Use simple 	 Differentiate 	 Integrate 		
needs to stick	probabilities for	discrete probability	trigonometric	standard		
	single events	distributions	functions	mathematical		
	 Draw and 	 Use the binomial 	 Differentiate 	functions including		
	interpret Venn	distribution	exponentials and	trigonometric and		
	diagrams	 Calculate 	logarithms	exponential		
	 Understand 	probabilities for the	 Differentiate 	functions of the		
	mutually exclusive	binomial	functions using the	form $f(ax + b)$		
	and independent	distribution	chain, product and	Use trigonometric		
	events		quotient rules	identities in		
	 Use tree 	 Understand the 	 Differentiate 	integration		
	diagrams	language and	parametric	Use the reverse		
		concept of	equations	of the chain rule to		
	 Use set notation 	hypothesis testing	 Differentiate 	integrate more		
	in probability		implicit functions	complex functions		

Solve conditional	 Understand that 	• Use the second	Integrate	
probability	a sample is used to	derivative	functions by	
problems	make an inference	Solve problems	making a	
problems	about population	involving	substitution, using	
• Draw and	 Find critical 	connected rates of	integration by parts	
interpret scatter	values of a	change and	and using partial	
diagrams	binomial	construct simple	fractions	
Interpret	distribution using	differential	• Use the	
correlation and	tables	equations	trapezium rule to	
causation	Carry out a one-	equations	approximate the	
 Interpret the 	tailed and two-	 Locate roots of 	area under a curve	
coefficients of a	tailed tests for the	f(x) = 0	Solve simple	
regression line	proportion of the	• Use iteration to	differential	
equation	binomial	find an	equations	
equation	distribution	approximation to	equations	
 Understand 	uistribution	the root of the	• Draw force	
exponential models	 Understand the 	equation $f(x) = 0$	diagrams and	
Use the product	• onderstand the normal distribution	• Use Newton-	calculate resultant	
•		Raphson procedure		
moment	Use a standard	to find the	forces	
correlation	normal curve		Understand and	
coefficient	Find unknown	approximations to	use Newton's laws	
Carry out a	means and/or	the solutions of the	Solve problems	
hypothesis test for	standard deviations	equations of the	involving	
zero correlation	for a normal	form $f(x) = 0$	connected particles	
	distribution			
• Use the addition	Approximate a	Work with	Calculate turning	
formulae	binomial	vectors for	effects	
• Solve	distribution using a	displacement,	Calculate the	
trigonometric	normal distribution	velocity and	resultant moments	
equations	Carry out a	acceleration	Solve problems	
Write equivalent	hypothesis test for	Use calculus with	involving bodies in	
expressions	the mean of a	harder functions of	equilibrium	
	normal distribution	time		

Prove		• Differentiate and	Resolve forces	
trigonometric	 Understand 3D 	integrate vectors	into components	
identities	coordinates		Solve problems	
	 Use vectors in 3D 	 Draw force 	involving smooth or	
Convert	 Use vectors to 	diagrams and	rough inclined	
parametric	solve geometric	calculate resultant	planes	
equations into	problems	forces	• Use $F \le \mu R$	
Cartesian form		 Understand and 		
 Sketch 	 Work with 	use Newton's laws	 Solve static 	
parametric curves	vectors for	 Solve problems 	problems involving	
 Solve coordinate 	displacement,	involving	weight, tension and	
geometry problems	velocity and	connected particles	pulleys	
involving	acceleration		 Understand and 	
parametric	 Use calculus with 		solve problems	
equations	harder functions of		involving limiting	
	time		equilibrium	
 Differentiate 	 Differentiate and 		 Solve problems 	
trigonometric	integrate vectors		involving motion	
functions			on rough or	
 Differentiate 	• Use		smooth inclined	
exponentials and	displacement-time		planes	
logarithms	graphs		 Solve problems 	
 Differentiate 	 Use velocity-time 		involving	
functions using the	graphs		connected particles	
chain, product and	 Use the constant 			
quotient rules	acceleration			
 Differentiate 	formulae			
parametric				
equations	 Solve problems 			
 Differentiate 	involving particles			
implicit functions	projected at an			
 Use the second 	angle			
derivative				

Solve problems	Derive the		
-			
involving	formulae for time		
connected rates of	of flight, range and		
change and	greatest height,		
construct simple	and the equation of		
differential	the path of a		
equations	particle		
	• Use		
	differentiation and		
	integration to solve		
	kinematics		
	problems		
	 Use calculus to 		
	solve problems		
	involving maxima		
	and minima		