| YE | AR 7 | AUTUMN TERM | | | | YEAR 7 | | SPRING TERM | | | | YE | AR 7 | SUMMER TERM | | | | |------------------------|---|---|--|--|--|---|--|--|--|---|--|--------------------------------------|---|-------------------------------------|--|--------------------------------------|--| | POWERFUL
IDEAS | Energy, Atoms,
Cells and
organisation | CEIAG | Rollercoaster
engineer:
CERN: be a particle
scientist
Physiotherapist | Focused retrieval 6 topics | KS2 Light:
KS2 Particle model:
TBC | POWERFUL
IDEAS | Atoms,
Cells and
organisation
Forces | CEIAG | Chocolatier
Midwife
F1 forces on a racing
car | Focused retrieval 6 topics | Y7 Atoms;
KS2 Reproduction
KS2 Forces | POWERFUL
IDEA | Atoms, Energy | CEIAG | Pollution control
officer
Insulating homes and
climate change | Focused retrieval 6 topic | KS2 chemical changes
Y7 Energy stores | | TOPICS | OPICS Substantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | Literacy | TOPICS | Substantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | Literacy | TOPICS Substantial know | | wledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | | ENERGY STORES | Lab safety, Conservation of energy | | ldentify energy stores and energy transfers, construct energy transfer diagrams, sankey diagrams, translate data between forms | | ers, construct energy transfer grams, sankey diagrams, slate data between forms, | | elements, elements in the periodic table, metals and non-metals, what is a chemical reaction, oxidation of metals, writing equations | | compounds using the particle model; representing reactions using | | compound; chemical
bond; symbol; formula;
property; reactants;
products, molecule,
aqueous, state symbol | ACIDS AND BASES | What is an acid/alkali/neutralisation What the pH scale is used for. Where indicators come from. Why universal indicator is so useful. Reactions of acids with metals and | | use pH scale; determine what makes a good indicator. name some common salts, work safely, measure liquids, make observations | | acid, alkali, pH
scale; strong, weak;
indicator; base;
neutralisation, salt | | | | | | | | | | | | | Uterus, Ovaries,
Testes, Menstrual,
Fertilisation, | | carbo | | | | | | PARTICLES | Particle model. Pure and impure. Expansion and contraction. gas pressure, Change of state. Diffusion. The atom. Elements, mixtures, Solutions. crystallisation, Separating techniques | | Draw particle dia
Carry out chrom
graphs. Interpret
Classify su | atography. Plot a cooling curve. | model, melting point, boiling point, limitation, expansion contraction, diffusion, atom, element, mixture, soluble insoluble, dissolve, solvent, solute, solution, saturated, solubility, crystallisation, filtration, evaporation, chromatography | REPRO DUCTION | adolescence, m
fertilisation, gesta
pregnancy, plant re | Human reproductive system,
adolescence, menstrual cycle,
fertilisation, gestation, lifestyle and
regnancy, plant reproduction, seed
dispersal. | | evaluate lifestyle impacts on
pregnancy, investigate factors
affecting seed dispersal | | HEAT Energy in fo
Conduction, con | | od and fuels;
vection, radiation | Using a bunsen buner (already seen in evaporation practical in chemistry??) Identify hazards and risks Draw a table given the headings. Plot data on a bar chart given axis. Label axis with units and name from given variable Rank food from larges to small energy content based on results | | conduction,
convection,
radiation, fuel | | CELLS AND
ORGANISMS | specialised co
organisms, organ
organisation, ske | unal cell structure, pells unicellular slides, modelling diffusion, seleton, joints and scles. Use of a microscope, making onion slides, modelling diffusion, evaluating ideas (what makes something alive), modelling joints, | | Nucleus, Cytoplasm,
Mitochondria, Membrane,
Chloroplast, Vacuole,
Microscope, Unicellular,
Specialised, Diffusion,
Palisade, Cartilage,
Ligament, Antagonistic | FORCES | Forces, force diagrams, balanced and unbalanced forces, rockets (streamline and air resistance) | | Identify forces in simple systems such as a car moving (thrust and air resistance), falling objects (force due to gravity and air resistance), object on a table (force due to gravity and normal force). Measure forces with a Newton meter. | | magnitude,
equiilibrium, | | | | Choose DV, IV and 0 | CV from options | | | | YEAR 8 | | AUTUMN TERM | | | | YEAR 8 | | SPRING TERM | | | YEAR 8 | | | SUMMER TERM | | | | |-----------------------|--|--|---|---|---|------------------------|--|---|--|--|--|------------------------|--|---|--|--|---| | POWERFUL
IDEAS | Ecosystems
Chemical
reactions;
Forces | CEIAG | The environment agency Principle scientist | Focused retrieval 6 topics | Y7 Cells
Y7 Elements and
compounds
TBC | POWERFUL
IDEAS | Organisation
Chemical
reactions
Forces | CEIAG | Health and respiratory
physiologist
Mining | Focused retrieval 6 topics | Y7 Organisation 1
Y7 particles
TBC | POWERFUL
IDEA | Genetics
Waves
Earth and
atmosphere | CEIAG | TBC
Lighting technician
TBC | Focused retrieval 6 topic | TBC
KS2 Light
KS2 Rocks | | TOPICS | Substantial Imag | ubstantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | TOPICS | Substantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | Literacy | TOPICS | Substantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | Litereev | | ECOLOGY | Photosynthesis, plant structure ecosystems, food chains and we | | t structure, ns and webs nulation, investigating adaptations, evaluating human impact on ecosystems | | Literacy Photosynthesis, Producer, Ecosystem, Palisade, Epidermis, Consumer, Bioaccumulation, Adaptation, Respiration, Photosynthesis, Carbon | ORGANISATIO
N 2 | Lung structure, breathing, | | Compare breathing and respiration, analyse data relating to disease, investigate factors affecting enzyme action, Interpret food test reagent results. | | Oesophagus, Pancreas,
Intestine, Enzyme,
Catalyst, Digestion,
Carbohydrates, Protein,
Minerals, Benedicts,
Iodine, Respiration,
Aerobic, Anaerobic,
Mitochondria, Exothermic, | VARIATION and GENETICS | Types of variation, DNA and its discovery, Inheritance, natural selection evolution, extinction, fossils. | | Investigate types of variation, interpret graphs showing variation, Predict simple inheritance, model evolution, suggest reasons for extinctions, model fossil formation. | | variation,
inheritance, DNA,
fossils, evolution,
extinction | | CHEIMCAL
REACTIONS | conservation of mass,balanci
equations, Conservation of Ma
application. The products wh
metal carbonates undergo ther
decomposition reactions. The e
catalysts have on reactions. | | the practical. Take measurements using a balance. Use a Bunsen. To calculate the mass of oxygen gained during suideties. Write word and | | conservation,
analysis, thermal
decomposition,
catalyst, exothermic,
endothermic | REACTIVITY | Products when a metal and acid
react. Reactivity change in groups 1
and 7. Reactivity series.
Displacement reactions. | | Compare properties through experiment Classify unknown substances. Make predictions about reactions of elements based on their position within a group. Make and record accurate experimental observations | | atom, proton, neutron, electron, nucleus, electron shell, group, period, alkali metal, halogen, halide, reactivity, displacement, electrolysis, ore | WAVES | Types of waves, making and detecting sound, representing sound, light, splitting light, reflection refraction, the eye, pinhole cameras. | | Recognise transverse waves, recognise longitudinal waves and Label them. To know how to draw a sound wave diagram and represent sounds of different amplitudes Know how to draw light ray diagrams paying attention to the lines being straight, arrows showing direction Draw a diagram using a light box and mirror. How to use a protractor to measure an | | matter, modle,
longitudinal,
transverse,
reflection, refraction, | | | Fermer | ntation | | equation. present
and data using
thods, including | | Speed, distanc | Speed, distance-ti | | decele
To be able to descr
distance t | me.
graphs for Constant
, accelerating and
erating.
ibe a journey from a | stationary, | | | | angle Draw a diagram using a light box and a perpex/glass block How to use a protractor to measure ar angle | | | | FORCES | Mass, weight, gra
friction, work don
moments, all | e, Hooke's law, meter, calculate mean values, draw | | Gravity, weight,
mass, gravitational
field strength,
Newtons,
proportional, directly
proportional,
moment, pivot, work
done, | MOTION AND
SPACE | and motion, relative m | | To interpret a paragra
answer questior
parag
To be able to interp
graph and desc
To be able to clearly
and show detail abo
average speed
To draw a free b | distance time graph. o interpret a paragraph of text and able to answer questions based on said paragraph. To be able to interpret a distance-time graph and describe the journey. o be able to clearly describe the motion, nd show detail about distance, time and average speed from the graph. To draw a free body diagram with perpendicular or opposite forces | | EARTH'S
STRUCTURE | Formation and p | cture of Earth.
properties of rock
e. Classification of
cks. | Explain mode
Compare diff
presenting inf
classificat | erent ways of ormation. Use | core, mantle, crust,
sedimentrary,
igneous,
metamorphic,
extrusive, intrusive,
crystalline. | | | YEAR 9 AUTUMN TERM | | | | YF | AR 9 | | SPRIN | IG TERM | | YEAR 9 SUMMER TERM | | | | | | | | | | | | |----------------------|---|---|---|--|---|--|--|---|---|---|--|--|---|--|--|--|---|--|--|--|---| | POWERFUL
IDEAS | Earth and
atmosphere
Analysis
Energy
Cells | CEIAG | Volanologist, scene of crime officer. Working in the renewable energy industry | Focused retrieval 6 topics | TBC
TBC
Y7 Heating
Y7 Cells | | Earth and
atmosphere
Electricity
Organisation
Earth and
atmosphere | CEIAG | Vehicle maintence
Working at a nuclear
power station
TBC | Focused | Y8 Carbon cycle
Y8 Waves
Y8 Organisation
Y7 Separating techniques | POWERFUL | Organisation
Forces | CEIAG | TBC
Mechanical engineer | | Y7/8 Organisation
Y7/8 Forces | | | | | | TOPICS | Substantial know | ledge (KNOW) | Disciplinary Kno
HOW | | Literacy | TOPICS | Substantial knowledge (KNOW) | | Disciplinary Knowledge (KNOW HOW TO) | | Literacy | TOPICS | Substantial knowledge (KNOW | | | | Literacy | | | | | | EARTH'S
STRUCTURE | Age and structure of Earth. Formation and properties of rock types. Rock cycle. Classification of rocks. | | es of rock Compare different ways of | | Compare different ways of presenting information. Use | | Explain models of the Earth. Compare different ways of presenting information. Use classification charts. sedimentrary, igneous, metamorphic, extrusive, intrusive. | | igneous,
metamorphic,
extrusive, intrusive, | Atmosphere | greenhouse effect, pro
gases, global warmin
footprint, oth
Charge, potential d | early atmosphere, the dcution of greenhosue ng, fossil fuels, carbon ner pollutants. | decimal places. Write symoble of Use circuit diagrams | ing mean, appropriate
e word and balanced | | | | | use qualitative reagents to test for a range of
carbohydrates, lipids and proteins; represent
the action of enzymes using simple word
equations e.g. starch> glucose for amylase
use of the lock and key model to explain
enzyme action. Interpret graphs in relation to
factors affecting enzyme action, calculate rate | | and key, catalyst,
carbohydrases, amylase,
protease, lipases, amino | | | Pure substances and formulation chromatography, testing for differ gases. | | | | crystalline. | Electricity 1 resistance, ÀC/DC, around electricity, of elect | | National grid, safety
domestic electricity | circuit diagrams. Use a
investigate resista
Calculate resistance
pl | variety of common circuit components. Draw ircuit diagrams. Use appropriate apparatus to investigate resistance in a wire, safely. Calculate resistance. Plot a graph. Wire a plug. Understand the size and scale in relation to | | ANIMAL
ORGANISATION | Food tests, digestive system, enzymes, factors affecting enzymes, heart, circulation, blood and blood vessels, coranary heart disease | | for chemical reactions, use a continuous
sampling technique, use lodine reagent to test
for starch; identify variables, "Calculate rate of
blood flow. Identify blood components from a
photograph or diagram. | | acids, fatty acids, sugars, rate, atria, vena cava, pace maker, trachea, bronchi, alveoli, gas exchange, platelets, haemoglobin, deoxygenated, pulmonary, | | | | | | ANALYSIS | | | | | chromatogrpahy
retention factor,
limewater, formulation | | | ganisation, plant
viration, translocation | cells, tissues, organs and systems. Use simple compound measures such as the rate of transpiration. Translate information between graphical and numerical forms. Plot and draw appropriate graphs, selecting appropriate scales for axes. Extract and interpret information from graphs, | | transpiration,
translocation, tissue,
organ, epidermis,
palisade, spongy
mesophyll, xylem,
phloem, guard cells, | | | | | | stents, statins, arteries, veins, capillaries. | | | | | | | Energy strores, energy transfers, conservation of energy, efficiency, thermal insulation, generating electricity, renewable and non-renewable resources | | Identify energy stores. Identify energy transfers. Calculate useful and wasted energy transfers. Interpret Sankey diagrams. Calculate efficiency. Investigate | | Kinetic, thermal. | | | | waste water, life significance of data. Follow instructions and | | stomata, meristem. | FORCES PART 1 | electrostatic field
electromagnetism, p | , electrostatic forces,
s, magnetic fields,
ressure, atmospheric | Draw gravitational field lines; Draw
Electrostatic field lines for point chrges of bot
positive and negative; Draw electrostatic fiel
lines between 2 charged plates; Draw the
magnetic field lines around a bar magnet; | | | | | | | | Energy PART 1 | | | different forms of insulation. Identify
variables. Draw cooling curves. Compare
power ratings, energy transfers and
domestic fuel bills. Draw a flow diagram | gravitational, nuclear,
advantage,
disadvantage, solar,
geothermal, | resources, potable w | able resources, using water, waste water, life s, reduce reuse recycle. | finite, sustainibility,
synthetic, potable,
desalination, sterilising,
distillation, evaporate,
sedimentation, effluent, | | | | pressure, pressure in fluids | | Build circuits and investigatte the variables
effecting the strength of an electromagnet
calculate presure; | | atmospheric | | | | | | | | | | | showing the energy transfers taking place in power stations. | | | | | burner. Carry out simple comparative Lo | | anaerobic, aerobic | | | | | | | | | | | | | Cells | diffusion, osmosis, a | Eukaryotic, prokaryotic, specialised cells,
diffusion, osmosis, active transport,
adaptations for exchange, | | I interpret images of lls, | prokaryote, eukaryote, | | | | | | | | | | | | | | | | | | Microscopy | Orders of magnitud | | | magnification, resolution,
magnitude | | | | | | | | | | | | | | | | | | NOTE: due to some currciulum changes topics may appear more than once as the new sequence runs through: for example: Earth's Structure