Written Methods Calculation Policy

Thousands	Hundreds	Tens	Ones		Tenths	Hundredths	Thousandths
1000s	100s	10s	1s		1/10s	1/100s	1/1000s
		θ θ θ θ	\square	-			

Number Lines: regardless of which operation is being used, smallest \& largest numbers must be at the 'correct' end (place value needed so children know which is the smallest \& largest number).

Smallest
Largest
Number

Formal Written Methods Must:

- show operation symbol
- carry underneath
- exchange by crossing through and rewriting above

Year 1:

Objects (concrete), number tracks (visual), written equations (abstract).
Maths Mastery big picture. Show addition can be done in any order.

Jane had 3 bears. She was given 2 more. How many does she have now?
$19+24=43$

Exchange Game (to prepare for formal written addition): e.g. using dienes blocks or other objects:

roll a dice \& take 1-6 'ones'.

When have ten, 'swap' for a 'ten'.
When have ten 'tens', swap for a 'hundreds'.
When have ten 'hundreds', swap for a 'thousand'.

응

Year 2:

Partitioning \& recombining when exchanging - using concrete objects to support.
$47+76=$

Use dienes blocks to represent the numbers in correct columns.

Add together, starting from the ones and exchange where necessary - carry over into the new column. Then recombine.

Partitioning and recombining.
Number line - adding multiples of ten, using numbers bonds to 10 .

Year 3:

Year 4:

Column Addition - adding ones first, then tens, then 100s and recombining.	
43	358
+54	+33
7	$\underline{90}$
$\underline{97}$	$\underline{300}$
	$\underline{391}$

Column Addition - adding ones first, then tens and recombining.
$43 \pm$
54
7
90
97

Compact Column Method -
adding from ones and carrying underneath.

358
33
+391
391
1
$8+3=11$. So place the one and carry ten.
$50 _30+10=90$
$300+$ no hundreds is 300

Year 5 \& 6:

Compact Column Method, extending to 4 digit numbers; 2 decimal places; different number of decimal places and adding more than 2 numbers.

Number line method to add time, in minutes and hours (as time is measured in 60 minutes, not hundreds).

Subtraction:

Year 1

Objects (concrete), number tracks/drawings (visual), written equations (abstract).

Subtract/take away:

Using moveable objects to physically take away and pictures.

Write equations using symbols
e.g. $5-2=3$

6 in a bag. Take away 2 and there are 4 left in the bag $\rightarrow 6-2=4$

As with addition, concrete objects to shows tens and ones. Taking away

Find the difference:

Using moveable objects and drawings e.g. bead string, coins, cubes

Year 2

Use of concrete to consolidate but moving towards number lines and column methods.

Subtract/Take away:


```
Finally circle the
tens of the smaller
number and write
how many tens have
been left
e.g. 13-1 ten which
leaves 3 tens
```



```
47-13=34
```

Use partitioning and column method (supported with dienes blocks) when not crossing the tens boundary.
$67 \rightarrow 60+7$

$$
82 \rightarrow 80+2
$$

$$
-35 \rightarrow \underline{30}+\underline{5}
$$

$$
-21 \rightarrow \underline{60}+\underline{1}
$$

$$
\underline{30}+\underline{2} \rightarrow 32
$$

$$
\underline{20}+\underline{1} \rightarrow 21
$$

Find the difference:

Use place value knowledge to add to the nearest ten, add in tens and then ones.
e.g. What is the difference between 23 and 18? (Counting on)

e.a. what is the difference between 7 and 34?

Bar modelling:

Use pictorial bars to represent numbers to find missing numbers.
What is the sum of 280 and 136 ?

The sum of 280 and 136 is \square

Find the difference between 288 and 126? 288

Year 3

Continue pictorial methods (see above) moving onto the abstract formal written column methods, including HT1s - HT1s, with concrete objects to support (e.g. dienes blocks)

3 digit subtract 3 digits

(using dienes blocks to consolidate from Yr 2)

$$
\begin{aligned}
874 & \rightarrow 800+70+4 \\
-523 & \rightarrow \underline{\underline{500+20+2}+\underline{3}} \underline{\underline{300+50+1}} \rightarrow 351
\end{aligned}
$$

Including exchanging:

$$
\begin{aligned}
326 & \rightarrow \begin{array}{c}
200120 \\
-152+80+6
\end{array} \\
\rightarrow & \xlongequal[100+50+2]{100+70+4}=174
\end{aligned}
$$

Year 4

Consolidate column method with partitioning, then move to compact method.

Alwavs beainning with the 'ones' column,
874
367
$-\underline{523}$ 351
-25
-342

Including single exchange:
(children must be confident in the value of each digit e.g. $2=20-$ two tens)
212
886
-152
174

Year 5 \& 6: Use column compact method for a wider range of applications.

Different numbers of digits:
${ }^{1}{ }^{1} 567$
$-\quad 734$
-1833

Decimals, including money \& measures
$E 1^{3} x^{1} 47$
-£ 4.83
f 9.64

> | Numbers with different |
| :--- |
| numbers of decimal places |
| - use of a place holder. |
| $37.4-15.25$ |
| $37.1^{1} 0$ |
| -15.25 |
| 22.15 |

Multiplication:

$X 10$ and $\times 100$
Years 2 and 3: move digits written method
Years 4-6: mental calculations (including decimals)

Year 1

Use of concrete objects and pictorial representation.

1	2	3	4	5	6	7	8	9	90_{0}°
11	12	13	14	15	16	17	18	19	20°
21	22	23	24	25	26	27	28	29	30_{0}°
31	32	33	34	35	36	37	38	39	40_{0}°

Find patterns on 100 s squares for $\times 2, \times 5, \times 10$:

Year 2: (times tables- $x 2, \times 5, \times 10$)
Building on skills of counting in $2 s, 5 s$ and $10 s$.
Repeated addition:
3×5 (3 lots of 5)

5×10 (5 lots of 10)

Arrays:

Support understanding that the multiplication of 2 numbers can be done in any order.
3×4 (3 rows of 4$)$
4×3 (4 rows of 3)

Year 3

Consolidate repeated addition, including larger jumps

Introduce multiplying with formal vertical method.
Begin by multiplying with the 'ones' digits. Introduce exchanging underneath.

Year 4

Consolidate column method from Yr 3 including carrying underneath (as in addition).
24 354

144
2

1416
21

Year 5 \& 6

Vertical Multiplication, including 4 digits $\times 2$ digit numbers and decimals.

5246

31476
104920
136396 $\underbrace{}_{\text {ploce hoder }}$

Doubling and $\times 4$

Partition, $\times 2$ and then recombine:

$X 4 \rightarrow$ double and double again

Division:

Year 1

Consolidate counting to prepare for formal division.
Using concrete objects (bead string, cubes, Numicon) and pictorial representations.

Halving - sharing concrete objects into two groups.

Year 2

Introduce the language 'division' and the symbol ' -1

Grouping - into $2 s, 5 s$ and $10 s \rightarrow$ Cubes, bead strings, pictorially e.g. $6 \div 2=3$

Represent using equal jumps on a number line:
3 iumbs of 2. So 6 divided bv $2=3$

Year 3

Repeated Subtraction:
e.g. 4 groups of 3 . So $12 \div 3=4$

Arrays to show inverse:

$$
12 \div 4=3
$$

How many groups of 4 are there?

$$
12 \div 3=4
$$

How many groups of 3 are there?

Sharing using concrete objects, introduce remainder:

Year 4

Short division using times tables and remainder:

$$
\begin{gathered}
\frac{32}{36} \quad \sqrt[7]{9^{2} 8} \\
0 \longdiv { 0 8 6 r 2 } \\
\sqrt[5]{4^{4} 3^{3} 2}
\end{gathered}
$$

Year 5

Short division, including remainder as fractions and decimals:

28 r12
$28 \frac{12}{15}$
28.8

Year 6

Halving

