Year 6 ADDITION

MENTAL CALCULATION.Many strategies, including:Mental recall of number bonds $\Box + 3 = 10$ 6 + 4 = 10 $\Box + 3 = 10$ 25 + 75 = 100 $19 + \Box = 20$

Use near doubles 6 + 7 = double 6 + 1 = 13

Addition using partitioning (splitting up) and recombining 34 + 45 = (30 + 40) + (4 + 5) = 79

Counting on or back in repeated steps of 1, 10, 100, 1000 86 + 57 = 143 (by counting on in tens and then in ones)

Add the nearest multiple of 10, 100 and 1000 and adjust 24 + 19 = 24 + 20 - 1 = 43 458 + 71 = 458 + 70 + 1 = 529

WRITTEN METHODS

Children should use the carrying method for numbers with more digits.

7648	6584	42
+ 1486	<u>+ 5848</u>	6432
9134	12432	786
1 11	1 1 1	3
		+ 4681
		11944
		121

Using similar methods, children will

add several numbers with different numbers of digits;

- ✓ begin to add two or more decimal fractions with up to four digits and either one or two decimal places;
- know that decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. 401.2 + 26.85 + 0.71
 - 401 . 2 26 . 85 0 . 71

+

<u>Year 6</u> SUBTRACTION

MENTAL CALCULATION. Many strategies, including:

Mental recall of addition and subtraction facts

10 - 6 = 4	17 - 🗆 = 11
20 - 17 = 3	10 - 🗆 = 2

Find a small difference by counting up 82 - 79 = 3

Counting on or back in repeated steps of 1, 10, 100, 1000

86 - 52 = 34 (counting back from 86 in tens and then in ones **or** counting on from 52 to 86) 460 - 300 = 160 (counting back in hundreds from 460 **or** counting on from 300 to 460)

Subtract the nearest multiple of 10, 100 and 1000 and adjust

24 - 19 = 24 - 20 + 1 = 5 458 - 71 = 458 - 70 - 1 = 387

Use the relationship between addition and subtraction

36 + 19 = 55	19 + 36 = 55
55 - 19 = 36	55 - 36 = 19

WRITTEN METHODS

Decomposition

	5 13 1 6/4/67
-	2684
	3783

Where numbers in the calculation are close together or near to multiples of 10, 100 etc, counting on using a number line should be used. 3002 - 1997 = 1005

Children should:

- ✓ be able to subtract numbers with different numbers of digits;
- ✓ be able to subtract two or more decimal fractions with up to three digits and either one or two decimal places;
- know that decimal points should line up under each other.
- \checkmark **Double check** answers by **ADDING** e,g, 25 7 = 18 because 7 + 18 = 25

<u>Year</u> 6 MULTIPLICATION

MENTAL CALCULATIONS. Many strategies, including:

Doubling and halving

Applying the knowledge of doubles and halves to known facts. e.g. 8×4 is double 4×4

Using multiplication facts

<u>Years 5 & 6</u> Derive and recall quickly all multiplication facts up to 10 \times 10. Some pupils manage \times 11 and \times 12 tables too.

Children should be able to use their tables knowledge to derive other facts. e.g. If I know $3 \times 7 = 21$, what else do I know? $30 \times 7 = 210$, $300 \times 7 = 2100$, $3000 \times 7 = 21000$, $0.3 \times 7 = 2.1$ etc

Use closely related facts already known

13 × 11 = (13 × 10) + (13 × 1) = 130 + 13 = 143

Multiplying by 10 or 100

Knowing that the effect of multiplying by 10 is a shift in the digits one place to the left. Knowing that the effect of multiplying by 100 is a shift in the digits two places to the left.

Partitioning (splitting up)

 $23 \times 4 = (20 \times 4) + (3 \times 4)$ = 80 + 12 = 102

Use of factors 8 x 12 = 8 x 4 x 3

WRITTEN METHODS

ThHTU × U (Short multiplication - multiplication by a single digit)

For example: 4346 x 8

Children will approximate first: 4346 x 8 is approximately 4346 x 10 = 43460

<u>Year 6</u> Multiplication (cont.)

THEN EITHER the Grid method

X	4000	300	40	6	
8	32000	2400	320	48	32000
					+ 2400
					+ 320
					<u>+ 48</u>
					34768

OR the traditional method

	434	6
x		8
3	3476	8
	234	

HTU × TU (Long multiplication - multiplication by more than a single digit)

For example: 372 x 24

Children will approximate first: 372 x 24 is approximately 400 x 25 = 10000

THEN EITHER the Grid method

X	300	70	2	_
20	6000	1400	40	6000
4	1200	280	8	+ 1400
				+ 1200
				+ 280
				+ 40
				+ 8
				8928

<u>Year 6</u> Multiplication (cont.)

OR the traditional methods

372		or		372		
X 24	ł		×	24		
1488 7440			_	7440 1488	(372 (372	x 20) x 4)
8928	 3			8928		
					_	

Using similar methods, they will be able to multiply decimals with up to two decimal places by a single digit number and then two digit numbers, approximating first. They should know that the decimal points line up under each other.

For example: 4.92 x 3

Children will approximate first: 4.92×3 is approximately $5 \times 3 = 15$

THEN EITHER the Grid method

x	4	0.9	0.02	
3	12	2.7	0.06	12
				+ 2.7
				+ 0.06
				<u> 14.76 </u>

OR the traditional method

	4.92
Х	3
	14.76

N.B. The <u>Grid Method</u> of multiplication is encouraged by some High School maths teachers.

<u>Year</u> 6 DIVISION

MENTAL CALCULATIONS. Many strategies, including:

Doubling and halving

Knowing that halving is dividing by 2

Deriving and recalling division facts

<u>Year 5 & 6</u> Derive and recall quickly division facts for all tables up to 10×10 . Some pupils manage x11 and x12 tables too.

Dividing by 10 or 100

Knowing that the effect of dividing by 10 is a shift in the digits one place to the right. Knowing that the effect of dividing by 100 is a shift in the digits two places to the right.

Use of factors

378 ÷ 21	is	378 ÷ 3 = 126	SO	378 ÷ 21 = 18
		126 ÷ 7 = 18		

Use related facts

Given that 1.4 x 1.1 = 1.54 What is 1.54 ÷ 1.4, or 1.54 ÷ 1.1?

WRITTEN METHODS

Children will continue to use written methods to solve short division TU \div U and HTU \div U. Eq $\,$ 196 divided by 6 $\,$

Long division HTU ÷ TU e.g. 972 ÷ 36

Either by the Chunking Method

Any remainders should be shown as fractions, i.e. if the children were dividing 32 by 10, the answer should be shown as $3^{2}/_{10}$ which could then be written as $3^{1}/_{5}$ in its lowest terms.

<u>Year 6</u> Division (cont.) <u>Or the traditional long division method</u>

<u>27</u> 36)972 -<u>72</u> 252 -<u>252</u> 000

Extend to decimals with up to two decimal places. Children should know that decimal points line up under each other.

87.5 ÷ 7

<u>Or</u> the traditional method