
Subject Computer Science Year Group 10

Unit 1 Comp. Thinking Unit 1 Principles of Comp. Unit 2 Comp. Thinking Unit 2 Principles of Comp. Unit 3 Comp. Thinking Unit 3 Principles of Comp. Unit 4 Comp. Thinking Unit 4 Principles of Comp. Unit 5 Comp. Thinking Unit 5 Principles of Comp. Unit 6 Comp. Thinking Unit 6 Principles of Comp.

Scheme title
Intro to programming
Decomposition and Algorithms
Data Types and Variables
Numbers
Flowcharts

Binary Sequence, Selection and Iteration Binary Operations Subprograms Stored Program Computers Iterating through lists and strings Software Files System Threats Turtle Networks

Knowledge in sequence How do we write Python programs?

How do we convert binary to
denary?
What are unsigned Integers?
Is binary arithmetic different?
What is hexadecimal?

How do we write programs that use
selection?
How do we write for (in range) loop
and why are they useful?
What are procedures / functions
and how do we use them?

How do we represent negative
signed integers using two's
complement?
How can binary shifts be used to
multiply and divide?
How is text represented in binary
using ASCII?

How do we use subprograms to
decompose problems?
What is the difference between
local and global variables and when
do we use them?

What is Von Neumann
architecture?
What is the FDE Cycle and how do
we measure computer
performance?
Why do we need secondary
storage and what are the
advantages of the different
methods?

How do we apply string/list
methods?
How does indexing work in 2D
lists?
How do we iterate through lists
using loops?
What is a linear search and how
might it look in code?

What is an OS?
How does an OS manage files?
How does an OS manange
processes?
How does an OS manage
peripherals?
What is utility software?

How do we apply a merge sort to a
dataset?
How do we read external files?
Why do strings needs processing
when reading and writing data?
How do we write data to external
files?

What is Malware?
What are hackers and what are
their objectives?
What is social engineering?
What is data level protection?
What does robust software look
like?

How do we use the turtle module to
draw:
-Pens and lines
-Coordinates and polygons
-Colours and filling
-Circles
How do we use subprograms in
turtle to program effeciently?

What are LAN and WANs?
Network Speeds and how is the
performance of a network
measured?
What are the differences between
wired and wireless connections?
How do we arrange devices on a
network (toplogies)?

Purpose of scheme

Introduce and define the term
‘program’

Construct simple programs using
inputs and outputs
Recognise primitive data types (int,
real, char, string)
Define the term ‘variable’
Create variables of all types

Define the term ‘decomposition’
Define the term ‘algorithm’

To explore what is meant by a
digital computer.
To explore what is meant by the
terms binary, bit and byte.
To explore how computers store
numbers.

To explore how conditions can be
used to control the flow of code.

To explore how data can be
represented by lists.
To explore the different means of
looping code.

To explore how signed integers are
stored in binary.
To use left and right shifts to
multiply and divide binary values.
To explore how text is stored in
binary.
To understand why hexadecimal is
used by pgorammers and be able
to convert between hexadecimal
and binary.

To understand what is meant by a
subprogram.
To explore why subprograms are
used.
To make use of parameters.

To explore what is meant by the
stored prgoram concept.

To describe the hardware
components used during the FDE
cycle.

To undertand how different
components impact performance.

To identify the different secondary
storage and explore how they work.

To identify the advantages and
disadvantages of different storage
methods.

How to computers use data
structures?
To explore the characteristics of
one-dimensional and two-
dimenionsal lists.
To use loops to iterate through lists.

To explore the different roles of the
operating system including files
management, process
management, peripheral
mangagement and user
management.

To explore the different types of
utility software and to describe their
roles.

To explore ways of sorting data.

To practise reading and writing to
files.

To explore how 2D data can be
stored in files.

To explore different types of cyber
attack and the damage they cause.

To explore the different
characteristics of different types of
malware.

To explore ways of keeping a
system safe from attacks and
malware.

To practise decomposing a
problem.

To practise using the turtle module
to draw shapes and patterns.

To explore the characteristics of
wired and wireless networks
including hardware, topologies and
protocols.

Skills

Use inputs and outputs in Python
Layout code to be readable and
maintainable
Correct errors in programs
Use variables in algorithms and
programs

To be able to convert between
binary and denary.
To be able to determine the
number of unique bit patterns that
can be represented by a binary
pattern of a given length (2^n)
To be able to add two binary
values.

Use ‘if’ and ‘if else’ in code
Use ‘if elif else’ in code

Use repetition (condition-controlled
loops) in code

To be able to convert a signed
integer into binary using two's
complement.
To be able to perform binary shifts
on 8-bit values.
To be able to convert text into
binary using an ASCII table.
To be able to convert hexadecimal
in binary and viceversa.

Writing effecient programs.
Create functions and procedures.

Knowledge recall
Evaluation skills
Expression construction

1D and 2D indexing.
Applying loops in Python. Knowledge recall

Evaluation skills

Reading and writing files in Python.
Using loops to iterate through data.
Processing data to ensure it is
suitable.

Knowledge recall
Evaluation skills

Decomposition and abstraction
Writing programs using loops and
subprograms.

Knowledge recall
Evaluation skills
Expression construction

Key words
Program, algorithm, data types,
input, output, syntax

Bit, Byte, nibble, binary, denary,
integer, overflow

Sequnce, selection, looping
Boolean statements
Operators

Bit, Byte, nibble, binary, denary,
hexadecimal signed integer,
unsigned integer, overflow.

Function, procedure, parameter,
return value. Array, list, index, algorithm

Operating system, perhipheral,
directory, algorithm.

Data, algorithm, read, write,
append, CSV

Malware, cyber attack, bot, virus,
worm, spyware, Trojan horse,
keylogger, social engineering,
ransomware, hacker.

Decomposition, abstraction, Turtle,
color

LAN, WAN, protocol, topology, Wi-
Fi. switch

End point

To construct programs with inputs
and outputs that use variables with
various data types.
To create maintainable programs.

To be able to give the 8-bit binary
equivalent of a denary value and
vice versa.
To be able to add two 8-bit binary
values.

Solve problems using code
Use repetition in code
Use selection in code

Describe the limitations of ASCII.
To convert between binary, hex
and denary number bases with
confidence.
To be able to perform binary shifts.

To be able to implement
appropriate functions and
procedures when solving problems.

To be able to implement
appropriate functions and
procedures when solving problems.

To be able to find values in lists
using a loop.

Describe how an OS allocates each
active process a share of CPU time
Explain the role of a device driver
Describe features of a GUI user
interface
Select a utility tool for a specified
job

To read and write data structures to
and from files including appropriate
processing of data.

To identify bad practices and
explain ways to minimise risks.

Use the turtle module,
programming constructs, and
subprograms to create images

State two advantages and two
disadvantages of using wireless to
connect devices on a LAN rather
than cable
Construct an expression to
calculate the time needed to
transmit a file over a network
Explain the role of various
hardware components found on a
network
Explain why protocols are needed
on a network

Assessment Methods

Skills are teacher assessed in
lessons.
End of unit test.

In class quizzes.
End of unit test.

Skills are teacher assessed.
End of unit test.

In class quizzes.
End of unit test.

Skills are teacher assessed.
End of unit test. End of unit assessment.

Skills are teacher assessed.
End of unit test. End of unit assessment.

Skills are teacher assessed.
End of unit test. End of unit assessment.

Skills are teacher assessed.
End of unit test.

Skills are teacher assessed
End of unit test.

