Queen Elizabeth High School

Scheme of	SUBJECT: Mathematics YEAR: 11 Higher (set 2) ~ Autum		
	Surds and indices	Circle theorems	Probability
Key concepts	1) Calculate exactly with surds 2) Simplify surd expressions involving squares eg $\begin{aligned} & \sqrt{12}=\sqrt{ }(4 \times 3) \\ & \sqrt{12}=\sqrt{4} \times \sqrt{3} \\ & \sqrt{12}=2 \sqrt{3} \end{aligned}$ 3) Rationalise denominators 4) Recognise and use simple geometric progressions (r^{n} where n is an integer and r is a surd)	1. Apply and prove the standard circle theorems concerning angles, radii, tangents and chords and use them to prove related results, including a. angle at centre is equal to twice angle at circumference; b. angle in a semi-circle is 90°; c. angles in the same segment are equal; d. opposite angles in a cyclic quadrilateral sum to 180°; e. tangent at any point on a circle is perpendicular to the radius at that point f. tangents from an external point are equal in length;	1. Apply ideas of randomness, fairness and equally likely events to calculate expected outcomes or multiple future experiments 2. Relate relative expected frequencies to theoretical probability, using appropriate language and the $0-1$ probability scale 3. Understand that empirical unbiased samples tend towards theoretical probability distributions with increasing sample size 4. Enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams and tree diagrams

Queen Elizabeth High School

		g. the perpendicular from the centre to a chord bisects the chord; h. alternate segment theorem	5. Calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions 6. Calculate and interpret conditional probabilities through representation using expected frequencies with twoway tables, tree diagrams and Venn diagrams
Themes	Surds	Circle theorems	Probability
Challenge	1) Perform the four operations with surds in the following format $a \sqrt{b}+$ $c \sqrt{ } d$ 2) Focus on larger numbers which may take several steps to simplify 3) Rationalise denominators including brackets	1) Recap using SSS, SAS and ASA to prove two triangles are congruent 1) Use circle theorems to complete proof questions	4) Notation for Venn diagrams $P(A n B), P(A u B), P\left(A^{\prime}\right)$ 4) Venn diagrams using three events 5) Tree diagrams using more than 2 outcomes

	3) Solve multi-step problems involving surds and linking to other areas of mathematics		
Support	1) Recap square numbers 1) Focus on the methods for performing the four operations with surds, but leaving answers in unsimplified form 2) Focus on smaller numbers, i.e. multiples of $4,9,25,100$ etc 4) Can Identify arithmetic and geometric sequences 4) Create geometric sequences from rules	1) Recap parts of a circle 1) Recap basic angle properties and practice solving problems using more than 1 property	2) Recap language of probability and probability scales 3) Carry out experiments to investigate the connection between experimental and theoretical probability 4) Complete two way tables 5) Frequency trees to record information
Literacy focus	Key words: Surds, rationalise, sequences, geometric, square numbers, multiples, denominators, multiply, divide	Key words: Subtended, alternative theorem, radius, circumference, segment	Key words: Probability, dependent, independent, Tree diagrams, Venn diagrams, two way tables, experimental probability, Theoretical probability, relative frequency
Cross-curricular links			
SMSC \& MBV			
ASSESSMENTS	Assessment 1 ~ October	Assessment 1 ~ October	Assessment 1 ~ October

Queen Elizabeth

Scheme of W	SUBJECT: M	thematics YEAR: 11	igher (set 2) ~ Autumn term 2
	Direct and inverse proportion	Statistics recap and review	Vectors
Key concepts	1) Solve problems involving direct and inverse proportion, including graphical and algebraic representations 2) Understand that \boldsymbol{X} is inversely proportional to \boldsymbol{y} is equivalent to \boldsymbol{X} is proportional to $\frac{1}{y}$ 3) Construct and interpret equations that describe direct and inverse proportion 4) Recognise and interpret graphs that illustrate direct and inverse proportion	1. Construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use 2. Interpret, analyse and compare distributions of data sets from univariate empirical distributions through appropriate graphical representation involving discrete, continuous and grouped data, including box plots 3. interpret, analyse and compare the distributions of data sets from	1) Apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representation of vectors 2) Use vectors to construct geometric arguments and proofs

		through consideration of outliers, quartiles and inter-quartile range 4. Draw estimated lines of best fit 5. Make predictions 6. Interpolate and extrapolate apparent trends whilst knowing the dangers of doing so 7. Infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling	
Themes	Direct and inverse proportion	Representing data	Vectors
Challenge	1) Sketch graphs of direct and inverse proportion involving squares and cubes 3) Use algebraic notation for creating equations to represent direct and inverse proportion.	1) Calculating frequencies from histogram 1) Estimating frequencies above or below a given value, both on a histogram and a cumulative frequency diagram 1) Estimating key statistics from a cumulative frequency diagram 2) Compare two data sets from box plot by comparing the medians, IQR and spread of the data, include values in answer	1) Four operations with vectors involving negatives 2) Diagrams involving fractions of vector, i.e. using midpoints 2) Mixing vectors and ratios to solve more complex geometric arguments and proofs

Queen Elizabeth

High School

		Describing the relationship between the two variables as well as stating its correlation, understand the difference between these	
Support	1) Basic wordy problems using direct and inverse proportion, by calculating unitary proportion 1) Sketch graphs of simple direct and inverse proportion, i.e. not squares or cubes	1) Recap the meaning of frequency tables and interpretation of inequalities for intervals 1) Recap constructing and interpreting frequency diagrams and polygons 2) Compare two data sets using an average and the range 2) Calculate interquartile range from a set of raw data 4) Recap constructing scatter diagrams 4) Recap correlation	1) Link vectors to translations 1) Four operations with simple vectors 2) Simple basic diagrams involving addition and subtraction of whole vector
Literacy focus	Key words Direct, inverse, proportion,	Key words: Frequency, frequency density, histogram, interval, cumulative frequency, interquartile range, quartiles, scatter diagrams, correlation, box plot	Key words Vectors
Cross-curricular links			
SMSC \& MBV			
ASSESSMENTS	Assessment 2 ~ Mocks \#1	Assessment 2 ~ Mocks \#1	Assessment 2 ~ Mocks \#1
Out of school learning	Exam questions ~ $1 / 2$ Churchill exam paper \sim to be marked in class next week	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week

Scheme of W	SUBJECT: Mathematics		YEAR: 11 Higher (set 2) ~ Spring term 1	
	Growth and decay	Geometry and measures	Algebraic fractions	Further equations and graphs
Key concepts	1. Set up, solve and interpret the answers in growth and decay problems, including compound interest and work with general iterative processes	1) Solve geometrical problems on co-ordinate axes 2) Identify, describe and construct congruent and similar shapes, including on co-ordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors) 3) Describe the changes and invariance achieved by combinations of rotations, reflections and	1. Simplify and manipulate algebraic expressions involving algebraic fractions	1) Solve linear equations in one unknown algebraically including those with the unknown on both sides of the equation 2) Find approximate solutions using a graph 3) Solve quadratic equations (including those that require rearrangement) algebraically by factorising, by completing the square

		translations including using column vector notation for translations 4) Find the surface area of pyramids and composite solids 5) Calculate surface area of spheres, cones and composite solids 6) Calculate the volume of spheres, pyramids, cones and composite solids 7) including frustums 8) Calculate arc lengths, angles and areas of sectors of circles		and by using the quadratic formula 4) Find approximate solutions using a graph 5) Recognise, sketch and interpret graphs of linear and quadratic functions 6) Identify and interpret roots, intercepts and turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square 7) Translate simple situations or procedures into algebraic expressions or formulae 8) derive an equation, solve the equation and interpret the solution
Themes	Iteration	Geometry and measures recap and review	Algebraic fractions	Solving linear and quadratic equations

Queen Elizabeth High School

		scale factor, vector, surface area, volume, cone, cylinder, sphere, pyramid, composite shapes, frustum, arcs, sectors		Linear, quadratic, simultaneous, factorise, completing the square
Cross-curricular links				
SMSC \& MBV				
ASSESSMENTS	Assessment 3 ~ Formal in class assessments			
Out of school learning	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week

Queen Elizabeth High School

Scheme of W	SUBJECT: Mathematics	YEAR: 11 Higher (set 2) ~ Spring term 2
	Algebra: Further quadratics, rearranging formulae and identities	Equation of a circle
Key concepts	1. Simplify and manipulate algebraic expressions (including those involving surds) by: a. expanding products of two or more binomials b. factorising quadratic expressions of the form $a x^{2}+b x+c$ including the difference of two squares c. factorising quadratic expressions of the form $a x^{2}+b x+c$ d. simplifying expressions involving sums, products and powers, including the laws of indices 2. Understand and use standard mathematical formulae 3. Rearrange formulae to change the subject 4. Know the difference between an equation and an identity 5. Argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs 6. Where appropriate, interpret simple expressions as functions with inputs and outputs	1) Recognise and use the equation of a circle with centre at the origin 2) Find the equation of a tangent to a circle at a given point.

	7. Interpret the reverse process as the 'inverse function' Interpret the succession of two functions as a 'composite function'	
Themes	Algebraic manipulation	Equation of a circle
Challenge	1. Preform each of the skills on expressions involving surds 1. Expanding three brackets 1. Factorising expressions with a coefficient of 'a' 3. Rearrange formulae where the subject appears more than once 5. More complex proof problems 7. Calculate composite functions of algebraic expressions using algebra only Calculate inverse functions of more complex functions (i.e. subject appears twice0	2) Gradient of perpendicular lines 2) Link into trigonometry to calculate area of sectors and segments 2) Link into other areas of mathematics to solve more complex problems
Support	1) Recap FOIL method, or other methods covered for expanding two brackets 1) Recap the meaning of 'Factorising' Factorise into a single bracket 1) Recap rules of indices 3) Rearranging formulae using flow charts for those struggling Understand the difference between 'show' and 'Prove'	2) Find equation of a straight line
Literacy focus	Key words:	Key words:

Queen Elizabeth High School

	Factorise, completing the square, formulae, functions, composite, inverse	Radius, tangent, gradient, y -intercept, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, sectors, segments
Cross-curricular links		Assessment 4 ~ Mocks \#2
SMSC \& MBV		Exam questions \sim $1 / 2$ Churchill exam paper ~ to be marked in class next week
ASSESSMENTS	Assessment 4 ~ Mocks \#2	Exam questions ~ $1 / 2$ Churchill exam paper ~ to be marked in class next week
Out of school learning		

Queen Elizabeth

 High School