

Curriculum Intent for Computing

A Computing Curriculum for Life improves life skills and life chances through developing knowledge and understanding of Computing and Digital Literacy. We aim to prepare our students for their future by giving them the opportunities to gain knowledge and develop skills that will equip them for an ever changing digital world.

Overall, the computing learning journey creates digital citizens confident in computational thinking and skilled in workplace software. Computing builds resilience, as things go wrong and we need to start again. Resilience is a life skill valuable not just to school but the real world. This allows Rayner students to leave with a mindset and skillset prepared for whatever adventure they choose.

Computing Learning Journey

Ethical, Legal, **Environmental:** Current ethical, legal and environmental impacts and risks of digital

technology

Careers Software Developer **Applications Programmer** Systems Programmer

University Multimedia Programmer A systematic study of Systems Analyst algorithmic processes that describe and transform

Relational databases and structured query language: Concepts of databases and relational databases, (SQL) key commands

information Programming:

Data types, programming concepts, Arithmetic operations, Relational operations, Boolean operations, data structures, Input/output, Structured Query Language String Handling, Random umber generation, structured programming and subroutines, Robust and secure programming.

Apprenticeships

An IT apprenticeship is a real job in technology that provides you with training, industryrecognised qualifications and a salary.

mputing @ ASFC ameside College nputer Science A level **Digital Games** oduction Diploma

Cyber Security:

Purpose of cyber security, threats, social engineering, malicious code, and prevent cyber threats

Algorithms:

Understanding what algorithms are, determining the purpose methods to detect of algorithms in the format of both flowcharts and pseudocode

Computer Networks: Defining a computer

network and network protocols, describing types of networks and topologies, network security, describing the 4 layer TCP/IP model.

Computer Systems:

Hardware and software, Boolean logic, Software classification, classification of programming languages and translators, Systems architecture.

16

Representation of Data

Number bases, converting between number bases, units of information, binary arithmetic, character encoding, representing images, representing sound, data compression

Programming essentials in Scratch:

Create subroutines, develop understanding of decomposition, learn how to create and use lists, and build problem-solving skills.

Introduction to Python programming:

Applying the programming constructs of sequence, selection and iteration in Python

Physical computing:

Write simple programs that use these components t interact with the physical world

Business & Real World:

Introduction to Business Studies: Market Research and finance

Logic & Binary:

Introduction to logic and binary

using truth tables and logic gates

Graphics/Animation & Cyber Security:

Creating digital products in Photoshop about cyber safety & security.

Combine sequence, selection, iteration, and function/method calls to control the flow of program execution.

Vector Graphics:

Understand the processes involved in creating graphics and creating own in Photoshop

Programming essentials in Scratch:

Reviewing Scratch functionality. Focus: Variables, Logic, Loops and Conditional Statements.

Modelling data, spreadsheets:

Sorting and filtering data and using formulas and functions in spreadsheet software

WELCOME TO COMPUTING AT RSHS

Impact of technology: collaborating online respectfully: Introduction to the computer

room and how to use the school network appropriately. Identifying how to use online collaboration tools respectfully

Programming essentials in Scratch:

Applying the programming constructs of sequence, selection and iteration in Scratch

History of Computing

Exploring the development of Computing through time. Including digital literacy key skills.

		Year 8 –	Computing 2022-23				
Curriculum intent							
Term	Topic 1 (Week 1-9)	Topic 2 (Week 10-18)	Topic 3 (Week 19-27)	Topic 4 (Week 26-35)	Topic 5 (Week 36- 39)		
Knowledge	Block based programming (E-Safety introduction) Students will develop computer programming skills using Scratch block based language. The main programming concepts covered in this unit are Variables, Logic, Loops and Conditional Statements. Key digital literacy skills in Microsoft Word & PowerPoint	Computational Thinking - Logic/ Binary Student will explore what is meant by logic and binary. Study the key features of binary and denary number systems Identify NOT/AND/OR logic gates Key digital literacy skills in PowerPoint.	Graphics This unit combines learning editing skills in Photoshop whilst learning key digital world content preparing students for a life online. Vector graphics can be used to design anything from logos and icons to posters, board games, and complex illustrations. Through this unit, students will be able to better understand the processes involved in creating such graphics and will be provided with the knowledge and	Physical computing This unit applies and enhances the students' block based programming skills in a new engaging context: physical computing, using the BBC micro:bit. In the process, they will further develop programming skills and encounter a range of programming patterns that arise frequently in physical computing applications.	IDEA Award The Inspiring Digital Enterprise Award (IDEA) to develop digital, enterprise and employability skills for free. Online challenges, to achieve careerenhancing badges and consolidate learning across the topics and build on work place skills to create digital citizens		

Skills	Key Software Skills: Programming, Microsft Word & Powerpoint	Key Software Skills: Microsft Word & Powerpoint	tools to create their own. Key Software Skills: Editing in Photoshop Word processing	Key Skills: Programming, Microsoft PowerPoint	Key Software Skills: Word Processing, Creativity, Coding
Assessments	Teacher Q&A, Student oracy opportunities Teacher learning analysis mid-way through the completion of task and provide feedback the following lesson Peer assessment Self assessment End of unit Teacher assessment. Teacher learning analysis, provide feedback the following session.	Teacher Q&A, Student oracy opportunities Teacher learning analysis mid-way through the completion of task and provide feedback the following lesson Peer assessment Self assessment End of unit Teacher assessment. Teacher learning analysis, provide feedback the following session.	Teacher Q&A, Student oracy opportunities Teacher learning analysis mid-way through the completion of task and provide feedback the following lesson Peer assessment Self assessment End of unit Teacher assessment. Teacher learning analysis, provide feedback the following session.	Teacher Q&A, Student oracy opportunities Teacher learning analysis mid-way through the completion of task and provide feedback the following lesson Peer assessment Self assessment End of unit Teacher assessment. Teacher learning analysis, provide feedback the following session.	Teacher Q&A, Student oracy opportunities IDEA badges
Enrichment	Coding & Minecraft club IDEA Award	Coding & Minecraft club IDEA Award			

Year 8 Computing Autumn Term Knowledge Organiser Block Based Coding in Scratch

Ke	Key Vocabulary:				
1	Program	A program is a set of instructions that tell a computer what to do.			
2	Algorithm	A sequence of instructions that can be processed by a computer			
3	Sprite	Characters that you can make move or say things.			
4	Stage	The area of the screen where the action occurs in a Scratch program. Also the background of the project.			
5	Costume	Pictures used to change how a Sprite looks, or to animate a Sprite.			
6	Script	A series of connected blocks that perform a specific function.			
7	Loops	Loops are a programming concept that can be used to repeat sets of instructions until a certain condition is met.			
8	X and Y coordinates	This will help you remember X is like a cross and Y in the sky!! y-axis x-axis X, Y - X always comes first, like in the alphabet XYZ			
9	Events	an event is something that <i>happens</i> . It could be a key being pressed, or a mouse being clicked			


Blocks in S	cratch:	
Motion block	turn C* 15 degrees	Control the sprite's movement around the Stage.
Looks block	change size by 10	Change what the user can see on the Stage.
Sound block	play sound dance celebrate ▼ until done	Control the sound that is output
Event block	when Clicked	Start instructions running.
Control block	wait 10 seconds	Determine when other instructions run. For example, this could be by waiting before moving on to the next block, or running some blocks multiple times
Sensing block	touching color ?	Allow your programs to detect changes in your Scratch project, for example, if a sprite is touching another sprite, or how long a timer has run for.
Operator block	10 + 10	Used to manipulate letters, numbers, and symbols, and perform calculations or compare values. For example, you can use them for adding two numbers together, or searching for a letter in a word.
Variables block	set score ▼ to 0	Allow your programs to: define, set and change data stored in a variable and controls how you view the variable on the stage.
List blocks	add grape to fruit_list ▼	Used to manage data that are stored in a list.

Year 8 Computing Autumn Term Knowledge Organiser Logic

Key	Key Vocabulary:				
1	Hardware	The parts of a computer that can be physically touched: EXAMPLE: Monitor, keyboard, CPU			
2	Software	The programs and other operating information used by a computer. (Cannot be physically touched.) EXAMPLE: Microsoft Word, Google			
3	Peripheral	A hardware device for a computer but NOT essential for the computer to run. EXAMPLE: printer, speaker			
4	Motherboard	a printed circuit board containing the principal components of a computer or other device, with connectors for other circuit boards to be slotted into.			
5	CPU	CPU is considered as the brain of the computer. It controls the operation of all parts of the computer.			
6	Hard Drive	Where all the data is stored (even when computer turned off)			
7	RAM	Computer's short-term memory			
8	Graphics Card	Converts the binary code into the screen display – what we see!			
9	Boolean Logic	Logic used by a computer to process information it can only have two results: The result is TRUE, ON, (1) Or the result is FALSE, OFF, (0)			
10	Binary	Binary is a number system that only uses two digits: 1 and 0. The binary system is known as a 'base 2' system.			
11	Denary	The decimal or "denary" number system uses the Base-of-10 numbering system – the digits 0-9 used by humans.			
12	Logic Gates	A logic gate is a building block of a digital circuit.			

Bit (b)	(b) The smallest unit of data. 0 or 1.						
Nibble (N)	Nibble (N) 4 bits						
Byte (B)	8 bits (note the difference between b and E						
Kilobyte (KB)	1000 bytes	1000 bytes. Note KB is different from Kb.					
Megabyte (MB)	1000 КВ						
Gigabyte (GB)	1000 MB						
Terabyte (TB)	1000 GB						
Petabyte (PB)	1000 MB						
Multipliers	128	64	32	16			

Logic Gate Operators

CONVERTING FROM BINARY TO DENARY

To convert from binary to decimal (also known as denary) multiply each binary digit with its multiplier, then add up the products to work out the decimal number.

Multipliers	128	64	32	16	8	4	2	1
Binary number	0	0	0	0	0	0	0	0

Year 8 Computing Spring Term Knowledge Organiser Vector Graphics

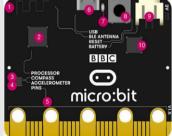
	KEY VOCABULARY						
1	Bitmap	Bitmap graphics are made up of pixels. Each pixel is stored on the computer as a series of 1s and 0s. When you take a photo with your smart phone it stores the digital image as a bitmap.	2	Vector	Vector graphics do not have any pixels. Instead they are made up of lines and shapes. When a vector is enlarged the lines and shapes are redrawn; making them great for resizing.		

		FILES TYPES
3	JPG	A system used to express numbers
4	PNG	Bitmap format that does not compress digital images (bigger file size than JPG). Supports transparent background.
5	GIF	Bitmap format that compresses digital images. Supports transparent background, animation and web safe colours
6	TIFF	Bitmap format that does not compress digital images (file sizes tend to be bigger). Great for printing good quality images.
7	SVG	Vector format; not widely supported. SWF files can be viewed using a web browser, such as Internet Explorer.

	EDITING	TOOLS	
Q	ZOOM IN/OUT Allows you to enlarge an area of the graphic (zoom in) to see it more clearly. Zoom out to see the whole graphic.	- À -	BRIGHTNESS/CONTRAST Brightness will lighten/darken the image. Contrast makes the lights lighter and darks darker.
4	CROP Allows you to chop off parts of an image you don't want to see. This will also change the dimensions of the image.		ROTATE Allows you to turn your Images clockwise/anticlockwise by a certain degrees.
	LAYERS Allows you to separate parts of a graphic into different layers, making it much easier to edit the graphic.		DESATURATE Desaturation turns colour photos black & white. Try 'colour splash' to enhance a desaturated photo.
MI	Allows you to change the dimensions of an image. You can also resize parts of the image if layers are used. Brightness/Contrast	-0-	FILTERS You can apply different filters to your photo, such as Mosaic Tiles, Stained Glass and Chalk & Charcoal.

Year 8 Computing Summer Term Knowledge Organiser Logic

Bitmap Bitmap graphics are made up of pixels. Each pixel is stored on the computer as a series of 1s and 0s. When you take a photo with your smart phone it stores the digital image as a bitmap. KEY VOCABULARY Vector graphics do not have any pixels. Instead they are made up of lines and shapes. When a vector is enlarged the lines and shapes are redrawn; making them great for resizing.


		FILES TYPES
3	JPG	A system used to express numbers
4	PNG	Bitmap format that does not compress digital images (bigger file size than JPG). Supports transparent background.
5	GIF	Bitmap format that compresses digital images. Supports transparent background, animation and web safe colours
6	TIFF	Bitmap format that does not compress digital images (file sizes tend to be bigger). Great for printing good quality images.
7	SVG	Vector format; not widely supported. SWF files can be viewed using a web browser, such as Internet Explorer.

		EDITING TOOLS						
8	Q	ZOOM IN/OUT Allows you to enlarge an area of the graphic (zoom in) to see it more clearly. Zoom out to see the whole graphic.	12	-) - (-	BRIGHTNESS/CONTRAST Brightness will lighten/darken the image. Contrast makes the lights lighter and darks darker.			
9	口	CROP Allows you to chop off parts of an image you don't want to see. This will also change the dimensions of the image.	13		ROTATE Allows you to turn your Images clockwise/anticlockwise by a certain degrees.			
1 0		LAYERS Allows you to separate parts of a graphic into different layers, making it much easier to edit the graphic.	14		DESATURATE Desaturation turns colour photos black & white. Try 'colour splash' to enhance a desaturated photo.			
1	N I	Allows you to change the dimensions of an image. You can also resize parts of the image if layers are used. Brightness/Contrast	15	<u>-</u>	FILTERS You can apply different filters to your photo, such as Mosaic Tiles, Stained Glass and Chalk & Charcoal.			

8.4 Summer Knowledge Organiser Computing

	Key vocab		
1	MICRO:BIT	A small computer designed by the BBC for use in computer education in the UK.	
2	PROCESSOR	Receives inputs from the computer and produces outputs.	
3	USB	The form of power supply used by the Micro:bit – power is transmitted from the computer via a micro-USB cable.	
4	BUTTONS	Input devices used within the Micro:bit to control or alter programs whilst running.	
5	LED (LIGHT EMITTING DIODES)	(LEDs) – used on the Micro:bit as a screen in a 5x5 grid to display information.	
6	ACCELEROMETER	An input device within the Micro:bit to control or alter programs by tilting or moving the device.	
7	MICROSOFT BLOCK EDITOR	The visual programming language used to create	
8	ALGORITHM	A set of instructions to be followed to complete a given task or solve a problem.	
9	PROGRAM	A sequence of instructions used by a computer.	
10	SEQUENCE	The order which the computer will run code in, one line at a time.	
11	SELECTION	A decision made by a computer, choosing what code should be run only when certain conditions are met.	
12	CONDITION	Checking to see whether a statement or sum is true or false.	
13	ITERATION	When a section of code is repeated several times –also known as looping.	
14	VARIABLE	Something which can be changed in a computer. Made up of a name and some data to be saved.	

age Organiser Compating				
https://makecode.microbit.org/				
15	Key features of the micro:bit			
16	On-board motion detector or "accelerometer" that can detect movement and tell other devices you're on the go. Featured actions include shake, tilt and freefall.			
17	A built-in compass or "magnetometer" to sense which direction you're facing, your movement in degrees, and where you are.			
18	Bluetooth Smart Technology to connect to the internet and interact with the world around you.			
19	Five Input and Output (I/O) rings to connect the micro:bit to devices or sensors using crocodile clips or 4mm banana plugs.			
		20 1.Buttons 2. LED display & light sensor 3. Pins - GPIO 4. Pin - 3 volt power 5. Pin – Ground		
	6 7 8 9	21 1.Radio & Bluetooth antenna		

- 2. Processor & temperature sensor
- 3. Compass
- 4. Accelerometer
- 5. Pins
- 6. Micro USB socket
- 7. Single LED
- 8. Reset button
- 9. Battery socket
- 10.USB interface chip