Rayner Stephens

Curriculum

Intent

for
Maths

At Rayner Stephens High School, we believe that everyone can do maths. The intent of the mathematics curriculum is to provide students with a high-quality and ambitious curriculum which will allow all students to achieve their mathematical potential and prepare them well for everyday life and future employment. Through mathematics lessons, we promote mathematical thinking which will encourage students to develop conceptual understanding, to establish links between the different disciplines within maths and to provide the opportunity to apply this understanding to solve increasingly complex problems. In KS3, students are introduced to topics in mathematics using a concrete, pictorial, abstract approach to allow students to develop their fluency, reasoning and problem-solving skills. Topics are interleaved to allow students to improve their previous learning and allow them to develop application and skill links between the different areas of mathematics. In KS3, students are exploring topics in order to create the building blocks to prepare them for their GCSE studies in Years 10 and 11. Covering the disciplines of number, algebra, geometry, ratio, proportion, data handling and probability, students are given the opportunity to retrieve, affirm and extend their understanding as they progress on their mathematics journey through KS3 and KS4. Students will be encouraged to become fluent in the fundamentals, to be able to reason mathematically, by problem solving and be able to develop an argument or justification using mathematical language.

Rayner Stephens

Mathematics Learning Journey Higher Tier
(a) Higher Tier

Rayner Stephens

> Mathematics Learning Journey Foundation Tier

\pm

Data
Handling Circles
$A=\pi r^{2}$ Compound
Measures Circles
$A=\pi r^{2}$ Compound
Measures

Venn Dlagrams
ythagoras

Expanding Ple Charts
 Fractions Error Graphs paralle Lines Changing the $\begin{gathered}\text { Angles } \\ \text { Subject }\end{gathered}$ Inequalities

Year 7 - Mathematics

Curriculum intent	Through mathematics lessons we promote mathematical thinking to allow all students to achieve their mathematical potential and engage in the study of mathematics. Using a mastery style approach to mathematics allows all students to develop their fluency, reasoning and problem solving using the concrete, pictorial, abstract (CPA) approach. As students progress through their learning topics from previous learning with be interleaved into future learning so students develop application and skill links between different areas of mathematics. In year 7, students start their journey with algebraic thinking, students will further develop pattern spotting, and develop a deep understanding of the basic algebraic forms and fundamentals. Much of this work will be developed using physical manipulatives and further their numerical reasoning. Students will then explore further the concepts of equivalence and equality in both algebraic and numerical form, this will link to real life concepts and explore associated topics to apply these skills. As year 7 continues students will explore new areas of mathematics linked to the four operations and fractions allowing students to develop and apply these central concepts to different areas of mathematics, including frequency diagrams, averages and area. Students will develop their application of calculations using formal methods, please refer to our calculation policy for more details. In Term 3 students will build on their KS2 skills in early work in probability and number proof, developing their ability to justify and reason deductively in both number and algebra.					
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Knowledge	- Sequences - Understand and use algebraic notation	- Equality and Equivalence - Place value and ordering integers and decimals	- Fraction, decimal and percentage equivalence - Solve problems with addition and subtraction	- Solve problems with multiplication and division - Fraction and percentage of amounts - Operations and equations with directed number	- Operations and equations with directed number - Addition and subtraction of fractions	- Sets and probability - Prime numbers and proof
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Skills	- Moving between different numerical, graphical and diagrammatic representations	- Simplify \& manipulate algebraic expressions to maintain equivalence	- Represent decimals and fractions on a number line - Compare quantities using fractions,	- Use the properties of multiplication and division, including the commutative	- Understand and use multiple representations of directed numbers	- Identify sets and create and represent them on Venn diagrams

- Make and test conjunctures about patterns
- Recognise \& generate terms.
- Use a calculator to check accuracy
- Use algebra to generalise the structure of arithmetic
- Formulate mathematical relationships
- Recognise and use relationships between operations, including inverse operations
- Use and interpret formal algebraic notation
- Substitute into expressions
- Generate terms of a sequence
- Produce graphs of linear functions of one variable
- Use approximation through rounding to estimate answers
- Use algebraic methods to solve linear equations with one variable.
- Use place value for decimals
- Understand and use place value for decimals, measures \& integers of any size
- Use mathematical symbols for equality and inequality
- Compare and order any number up to one billion
- Describe, interpret and compare the median \& range
- Use powers of ten in calculations
- Write numbers in standard form
decimals and
- Express one quantity as a fraction of another
- Use and interpret simple pie charts
- Using diagrams to represent any fraction as a diagram, on a number line
- Identify and use equivalent fractions
- Understanding fractions as division
- Convert fluently between simple fractions, decimals and percentages
- Understanding fractions greater than a whole
- Use the properties of addition and subtraction, including the associative law of arithmetic
- Develop mental strategies for addition and subtraction
- Use formal written methods for addition and subtraction, applied to positive integers and decimals
- Recognise and use the most appropriate method: mental strategies, formal written or calculator
- Perform calculations
that cross zero
- Complete
calculations using all four operators
involving direct numbers
- Use of a calculator with directed numbers
- Evaluate algebraic expressions involving directs numbers
- Understand and use
two step equations
- Explore powers and roots.
- Understand
representations of fractions
- Understand and use equivalent fractions
- Convert between mixed numbers and fractions
- Add and subtract proper fractions in any form
- Add and subtract improper fractions and mixed numbers
- Use fractions in algebraic contexts
- Use equivalence to add and subtract decimals, percentages and fractions
- Add and subtract simple algebraic fractions.
- Understand and use intersection and the union of sets
- Know and use the vocabulary of probability
- Generate sample spaces for an event
- Know the sum of probabilities of all outcomes is 1
- Calculate the probability of single events
- Understand and use the probability scale.
- Identify and use factors and multiples
- Find common factors and multiples including HCF \& LCM
- Write a number as a product of its prime factors
- Make and test conjectures, using counter examples to disprove a conjecture

			- Solve problems involving perimeter, financial maths, timetables, frequency diagrams			
Assessments	- 2unit assessments	- 2 unit assessments - Term Assessment	- 2 unit assessments	- 3 unit assessments	- 2 unit assessments Term Assessment	- 2 unit assessments
Curiosity	- Work on your IQ and test your pattern spotting skills https://www.intelligen cetest.com/questions /pattern- recognition/index.ht ml - Enter the National Cipher Challenge (Oct-Jan) https://www.cipherc hallenge.org/ - Research the famous Fibonacci sequence. Can you summarise your research in a poster or factsheet? - Try following sequences to solve the game about (app also available) http://gameaboutsq vares.com/	- Try out some of the UKMT Junior Challenge questions - some students get the chance to enter in Feb!) https://www.interacti ve-maths.com/ukmt-random-questiongenerator.html - Investigate palindromes - here's a short article to get you started https://nrich.maths.or g/2574 - Equivalence pairs can you get to cards face down Level 5? https://nrich.maths.or g/1249	- If you've been selected for the UKMT Junior Challenge questions - get some extra practice in! https://www.interacti ve-maths.com/ukmt-random-questiongenerator.html - You're throwing a birthday party for your friend. What will you do and how much will it cost? - In newspapers and magazines find fractions decimals or percentages in them and convert all the values you find.	- Make a how to use your calculator guide! It will come in helpful for future learning - You're planning an epic journey, use Google Earth to figure out where you will travel, and how far in total you will travel. Can you give distances in cm, m and km?	- Can you investigate average temperatures across the work, can you find very cold cities/places and compare them to very warm cities/places, Work out the differences https://www.cimt.org. uk/projects/mepres/b ook7/bk7il5/bk7 15i2 . htm - Can you design a board game which tests your fraction arithmetic?	- Can you sort shapes based on their properties into a Venn diagram? https://mathsframe.c o.uk/en/resources/res ource/83/sort-shapesvenn - Can you test the hypotheses? https://nrich.maths.or g/6033 - Can you explain why every year must contain at least one Friday the thirteenth? What is the greatest number of Friday the thirteenths that can fall in one year?

Key Vocabulary:		
1	Addition	To find the total of two or more numbers. Other words to describe addition include: 'add', 'plus', 'sum'.
2	Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away.
3	Commutative	Changing the order of the operations does not change the result. This applies to addition and multiplication.
4	Integer	A whole number that can be positive, negative or zero.
5	Decimal	A number with a decimal point in it. Can be positive or negative.
6	Associative	When you add or multiply you can do so regardless of how the numbers are grouped.
7	Inverse	To perform the opposite operation. For example, the inverse of addition is subtraction.
8	Balance	The amount of money in an account.
9	Credit	Money that goes into an account.
10	Debit	Money that leaves an account.
11	Standard Form	A way to write very big numbers or very small numbers with one number before the decimal point, multiplied by a power of 10 . It allows saying and calculating with very big numbers or very small numbers to be easier to handle.

16

Solve Problems with Perimeter

The perimeter is the length around the outside of a shape. For example, the perimeter of the quadrilateral is 16.7 mm . What is the length of the side marked x ?

Below is an example of a bank statement.

Date	Description	Credit	Debit	Balance
1 Mar	Opening Balance			254.76
3 Mar	Wages	$1,402.11$		$1,656.87$
4 Mar	Phone Bill		34.45	$1,622.42$

Here we can see the balance is the amount already in the bank account at the beginning of the month. Wages are a credit, as that amount is paid into the account. The phone bill is a debit, so that amount is subtracted from the balance. 18
Distance Tables:

To find the distance between Aberdeen and Leeds follow the arrows to where their row and column intersect to find the distance.
19

Frequency Trees

A frequency tree is made up from part-whole models. One piece of information leads to another.
For example: There are 50 plastic triangles and squares in a bag. All of the shapes are red or green. There are 23 triangles.
12 of the squares are red.
There are 24 green shapes.
To use this information to complete the frequency tree, start by filling in the given (27) (15) information and then fill in the gaps!

19

Standard Form
Writing large numbers in standard form.
$4,4,000=4 \times 1,000$
$=\underbrace{4 \times 10^{3}}_{\text {Strinanat torm }}$

Adding numbers in standard form
For example: ${ }^{4} \times 10^{4}+4 \times 10^{4}$ $=30,000+40,000$ $=70,000$ $=7 \times 10^{4}$

Year 7 - Spring Term Knowledge Organiser - Solving Problems with Multiplication and Division

Key Vocabulary:		
1	Multiply	The result of multiplying a number by an integer. The times tables of a number
2	Product	The result of a multiplication calculation.
3	Multiples:	Found by multiplying any number by positive integers
4	Factor	Integers that multiply together to get another number.
5	Quotient	The result of a division
6	Divisor	The number we divide by
7	Mean	The average of the all values, whereby all of the values are added together and then divided by the number of values.
8	Equivalent	Something that is essentially the same or equal to something else

9 Factors

A number that divides exactly into another number without a remainder. It is useful to write factors in pairs

The number itself is aways a factor

Factors of 4
1,2,4

, 2, 3, 4, 6, 9, 12, 18, 36

10 Multiples

The result of multiplying a number by an integer. The times tables of a number

11 Multiply and divide integers and decimals by powers of 10
A number that divides exactly into another number without a remainder. It is useful to write factors in pairs

Convert metric units

When we

 convert from big unit to small unit we multiply and if we convert from small unit to big unit we divide.

Use formal methods to multiply integers
Long multiplication column

14 Use formal methods to multiply decimals

Multiply 0.03 by $1.1=0.033$ Multiply 0.03 by $1.1=0.033$					
Multiply without decimal points: $3 \times 11=33$					
0.03 has 2 decimal places, and 1.1 has 1 decimal place, so the answer has 3 decimal places: 0.033					
15 Use formal methods to divide integers and decimals.					
$3584 \div 7=512$		$\begin{array}{llll}\text { Short division } & 5 & 1 & 2\end{array}$			
		$7 \longdiv { 3 } 3 ^ { 3 } 5 8 ^ { 2 } 4$			

Division with decimals

The placeholder in division methods is essential -the decimal lines up on the dividend and the quotient

$$
24 \div 0.02 \longrightarrow 24 \div 02 \longrightarrow 240 \div 2
$$

All give the same solution as represent the same proportion .Multiply the values in proportion until the divisor becomes an integer.

16 Order of operations

Break down the calculation using the order of operations.

$$
6 \times 4+8 \times 2
$$

$24+16$

Year 7 - Sequences - Knowledge Organiser- Autumn Term

