Rayner Stephens

Curriculum

Intent

for
Maths

At Rayner Stephens High School, we believe that everyone can do maths. The intent of the mathematics curriculum is to provide students with a high-quality and ambitious curriculum which will allow all students to achieve their mathematical potential and prepare them well for everyday life and future employment. Through mathematics lessons, we promote mathematical thinking which will encourage students to develop conceptual understanding, to establish links between the different disciplines within maths and to provide the opportunity to apply this understanding to solve increasingly complex problems. In KS3, students are introduced to topics in mathematics using a concrete, pictorial, abstract approach to allow students to develop their fluency, reasoning and problem-solving skills. Topics are interleaved to allow students to improve their previous learning and allow them to develop application and skill links between the different areas of mathematics. In KS3, students are exploring topics in order to create the building blocks to prepare them for their GCSE studies in Years 10 and 11. Covering the disciplines of number, algebra, geometry, ratio, proportion, data handling and probability, students are given the opportunity to retrieve, affirm and extend their understanding as they progress on their mathematics journey through KS3 and KS4. Students will be encouraged to become fluent in the fundamentals, to be able to reason mathematically, by problem solving and be able to develop an argument or justification using mathematical language.

Rayner Stephens

Mathematics Learning Journey Higher Tier
(a) Higher Tier

Rayner Stephens

> Mathematics Learning Journey Foundation Tier

\pm

Data
Handling Circles
$A=\pi r^{2}$ Compound
Measures Circles
$A=\pi r^{2}$ Compound
Measures

Venn Dlagrams
ythagoras

Expanding Ple Charts
 Fractions Error Graphs paralle Lines Changing the $\begin{gathered}\text { Angles } \\ \text { Subject }\end{gathered}$ Inequalities

Year 8 - Mathematics 2022-2023

Curric intent	Through mathematics lessons we promote mathematical thinking to allow all students to achieve their mathematical potential and engage in the study of mathematics. Using a mastery style approach to mathematics allows all students to develop their fluency, reasoning and problem solving using the concrete, pictorial, abstract (CPA) approach. As students progress through their learning topics from previous learning with be interleaved into future learning so students develop application and skill links between different areas of mathematics. In Year 8, students start their journey consolidating their knowledge of multiplication and division, considering both formal and mental methods to enable them to solve problems in a variety of ways. Moving on, students will further their understanding and become more confident with using directed numbers in a variety of numerical and algebraic applications to form a solid basis for further learning. Linking back to previous work on addition and subtraction from Year 7, students will further their knowledge using fractions and applying this to a variety of number types and using algebraic fractions. To complete the Autumn term, students will move on to ratio and proportion. As Year 8 continues, students will continue to study multiplicative change before exploring and furthering understanding of multiplying and dividing fractions. As the spring terms continues, students will study the Cartesian Plane to notice the proportional relationships of line graphs and line segments. Completing the term, students will learn about different types of data and some statistical representations including scatter graphs and tables before moving on to studying probability. In term 3, student will build upon their knowledge and apply it to indices calculations before moving on to further consolidate and expand their knowledge of fractions, decimals and percentages, before completing the year furthering their knowledge of standard index form.					
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer	Summer 2
Knowledge	- Solve problems with multiplication and division. - Operations and equations with directed number.	- Addition and subtraction of fractions. - Ratio and Scale. - Multiplicative Change.	- Multiplicative Change. (cont.) - Multiplying and dividing fractions.	- Working in the Cartesian Plane. - Representing Data. - Tables and Probability.	- Brackets, Equations and Inequalities. - Sequences	- Indices - Fractions and Percentages. - Standard Index Form
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Skills	- Use the properties of multiplication and division, including the commutative associative laws of arithmetic - Understand and use factors and multiples - Multiply and divide integers and decimals by powers of 10	- Understand representations of fractions - Understand and use equivalent fractions. - Convert between mixed numbers and fractions. - Add and subtract proper fractions in any form.	- Explore relationships between similar shapes. - Understand scale factors as multiplicative representations. - Draw and interpret scale diagrams. - Interpret maps using scale factors and ratios.	- Work with coordinates in all four quadrants. - Identify and draw line that are parallel to the axes. - Recognise and use the line $y=x$ - Recognise and use lines in the form $y=$ $k x$ - Link $y=k x$ to direct proportion problems.	- Form algebraic expressions. - Use directed number with algebra. - Multiply out a single bracket. - Factorise into a single bracket. - Expand multiple single brackets and simplify. - Expand a pair of binomials.	- Adding and subtracting expressions with indices. - Simplify algebraic expressions by multiplying indices. - Simplifying algebraic expressions by dividing indices. - Using the addition and subtraction law for indices.

- Convert between different metric units
- Use formal written methods for multiplication and division, applied to positive integers and decimals
- Understand and use order of operations
- Understand and use multiple
representations of directed numbers
- Understand and use multiple representations of directed numbers
- Perform calculations that cross zero
- Complete calculations using all four operators involving direct numbers
- Use of a calculator with directed numbers
- Evaluate algebraic expressions involving directed numbers
- Understand and use two step equations
- Explore powers and roots.
- Add and subtract improper fractions and mixed numbers
- Use fractions in algebraic contexts
- Use equivalence to add and subtract decimals,
percentages and fractions.
- Add and subtract simple algebraic fractions.
- Understand the meaning and representation of ratio and its notation.
- Solve problems involving the form 1:n or n : 1 .
- Solve proportional problems with two part ratios.
- Divide a value into given ratios
- Simplify ratios
- Express ratios is the form 1:n.
- Compare ratios and related fractions.
- Understand π as the ratio between diameter and circumference.
- Understand the gradient of a line as a ratio.
- Solve problems involving direct proportion.
- Explore conversion graphs.
- Convert between currencies.
- Represent multiplication of fractions.
- Multiply a fraction by an integer.
- Find the product of a pair of unit fractions.
- Find the product of a pair of any fractions.
- Divide and integer by a fraction.
- Understand and use the reciprocal.
- Divide any pair of fractions.
- Multiply and divide improper and mixed fractions.
- Explore the gradien of the line $y=k x$
- Recognise and use lines of the form: $y=$ $x+a$
- Explore graphs with negative gradient.
- Link graphs to linear sequences.
- Plot graphs of the form $y=m x+c$
- Explore non-linear graphs.
- Find the midpoint of a line segment.
- Draw and interpret scatter graphs.
- Understand and describe linear correlation.
- Draw and use line of best fit.
- Identify non-linear relationships.
- Identify different types of data.
- Read and interpret ungrouped and grouped frequency tables.
- Represent grouped discrete data.
- Represent continuous data grouped into equal classes.
- Represent data in two-way tables.
- Construct and find probabilities from sample space diagrams.
- Find probabilities from two-way tables and Venn diagrams
- Exploring powers of powers.
- Convert fluently between key fractions, decimals and percentages.
- Calculate key fractions, decimals and percentages of an amount without a calculator.
- Calculate fractions decimals and percentages of an amount with a calculator.
- Convert between decimals and percentages greater than 100\%
- Calculate percentage increase and decrease with a multiplier.
- Express one number as a fraction or percentage of another with and without a calculator.
- Work out percentage change.
- Choose appropriate methods to solve percentage problems.
- Find the original amount given a percentage.
- Investigate positive powers of 10 .
- Work with numbers greater than 1 in standard form.
- Investigate negative powers of 10

						- Compare and order numbers in standard form. - Calculate with numbers in standard form. - Understand and use negative and fractional indices.
Assessments	2 end of unit assessments.	2 end of unit assessments.	2 end of unit assessments.	3 end of unit assessments.	2 end of unit assessments.	3 end of unit assessments.
Enrichment	- Make a how to use your calculator guide! It will come in helpful for future learning. - You're planning an epic journey, use Google Earth to figure out where you will travel, and how far in total you will travel. Can you give distances in cm, m and km ? - Can you investigate average temperatures across the work, can you find very cold cities/places and compare them to very warm cities/places, Work out the differences. - Try to keep practising your negative number skills! https://www.cimt.org. uk/projects/mepres/b ook7/bk7i15/bk7_15i1 . htm \& https://www.cimt.org. uk/projects/mepres/b ook7/bk7i15/bk7 15i2 .htm	- Can you design a board game which tests your fraction arithmetic? - How do prices differ in different countries? Try finding the price of an item in 4 different country and convert the currency into British Pound which country is cheaper?	- Can you enlarge an image from a magazine by a scale factor?	- Looking at a newspaper or magazine, how many times do you see data displayed / represented? - Learn about the Archimedean spiral and its links to the coordinates we have been learning about. https://nrich.maths.or g/13746 - Can you make a treasure hunt using coordinates? - Have you tried Desmos graphing tool? https://www.desmos. com/calculator Experiment with different equations to see how they appear on a Cartesian Plane.	- How did the machine guess your number? Can you work out the process it used? https://nrich.maths.or g/7216 - Can you write a restaurant order for at least 8 friends using algebra and brackets? How could this help waiting staff? Are there any other real-life uses of brackets and algebraic expressions?	- Go shopping. Look around at the reductions in any shop - can you work out the percentage change? - Can you design a poster to explain the laws of indices and standard form? - Can you find the value of n using your knowledge of indices and algebra? https://nrich.maths.o rg/847

Key Vocabulary:

$\left.\begin{array}{|c|c|c|}\hline \text { Key Vocabulary: } & \text { The number below the line } \\ \text { on a fraction. The number } \\ \text { represent the total number } \\ \text { of parts }\end{array}\right\}$

14
Adding or Subtracting Fractions
Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. Then just add or subtract the
numerators and keep the denominator the same

$$
\frac{2}{3}+\frac{4}{5}
$$

Multiples of $3: 3,6,9,12,15$
Multiples of $5: 5,10,15$..
LCM of 3 and $5=15$

$$
\frac{\frac{2}{3}}{\frac{4}{5}}=\frac{10}{15}=\frac{12}{15}
$$

$$
\frac{10}{15}+\frac{12}{15}=\frac{22}{15}=1 \frac{7}{15}
$$

15

Understand and use equivalent fractions.

Equivalent fractions have different numerators and denominators but share the same value.

16 Add and subtract proper fractions and mixed numbers.
Use the bar models to help you work out the calculation.
numbers, we need to look at how many parts mak
up the whole.

$$
\begin{aligned}
& 1 \frac{1}{4}+\frac{3}{8}=1 \frac{2}{8}+\frac{3}{8}=1+\frac{5}{8}=1 \frac{5}{8} \\
& 1 \frac{1}{4}+\frac{3}{8}=\frac{5}{4}+\frac{3}{8}=\frac{10}{8}+\frac{3}{8}=\frac{13}{8}=1 \frac{5}{8}
\end{aligned}
$$

$$
\text { The bar models show } \frac{13}{6} \text {. }
$$

$$
\text { There are } 6 \text { parts in the whole. }
$$

$$
13 \div 6=2 \text { remainder } 1
$$

$\frac{13}{6}=2 \frac{1}{6}$
The bar models show $3 \frac{2}{5}$.
There are 5 parts in the whole.
$3 \times 5=15$
$\frac{15}{5}+\frac{2}{5}=\frac{17}{5}$

Year 8 Mathematics Knowledge Organiser - Ratio and Scale

Key Vocabulary:		
1	Ratio	Used to compare values; says how much of thing there is, compared to another thing.
2	Proportion	When two ratios or fractions are equal to each other.
3	Multiplier	The number that we are multiplying by.
4	Placeholder	Something that holds a place in a number, e.g. zero.
5	Factors	Numbers that we can multiply together to get another number. Numbers that go into another number.
6	Equivalent	Having the same value.
7	Scale	The relationship/ratio between two sets of measurements.
8	Circumference	The perimeter (the distance around the outside) of a circle.
9	Diameter	The distance from one point on a circle to another point on a circle, through the centre. The longest distance across the circle.

10 Representing Ratios
Ratios can be represented in many different ways:

11 Ratio Notation

Ratios are represented as numbers with colons in between

 for example 3:1.The order of the numbers in the ratio is always important; this tells us what the information is about
Most ratios have two parts, but ratios can have more than two parts, for example 2:3:1.

$12 \quad$ Solving Problems in the Ratio 1:n

The ratio 1:n means any ratio beginning with 1 , followed by any number, for example 1:1, 1:4, 1:200 etc.
n can be any number, including decimals, but for this topic, n will always be an integer (a whole number).
13 Dividing Values into Given Ratios We can use a bar model to help us understand how to divide values into a given ratio.

Example

Share $£ 56$ in the ratio 2:5.
- £56

There are 7 parts altogether,
so we can share the $£ 56$ into
these 7 parts by doing $56 \div 7=8$.
Now we know that 1 part = $£ 8$, we can work out how much 2 parts are $(2 \times 8=£ 16)$ and how much 5 parts are ($5 \times 8=£ 40$).

We can check our answer is correct by adding together our amounts and seeing if we get our original value: $16+40=56$, so we are correct.

14 Expressing Ratios in Simplest Form

 We can simplify ratios by finding factors in all parts of the ratio.
Example

Simplify the ratio 12:18.
We know the highest factor of both 12 and 18 is 6 , so we can divide both numbers by 6 .

$12 \div 6=2$

$18 \div 6=3$
So, the simplified ratio is $2: 3$.
(Remember, the order is important, this shouldn't change!) 15 Comparing Ratios and Fractions We can use representations (like those in section 8) to help us compare ratios and fractions.

Example

	Ratio	Fraction Red $:$ Yellow	$\frac{2}{7}$ are red

16

Understanding π as a Ratio π is a number that represents the ratio of the circumference of a circle to the diameter of a circle, so $\pi=\frac{C}{d}$. This can be rearranged to find the formula for the circumference of a circle: $C=\pi \times d$. We can substitute values of the diameter into this formula to calculate the circumference of any circle.

Example

The radius of a circle is 8 m . Find the circumference. $C=\pi \times 8=25.132 \ldots \mathrm{~m}^{2}$
17 Understanding Gradient as a Ratio
Gradient (or slope) describes how steep a line is.
We can calculate the gradient of a line using the ratio of width : height of a triangle.
Once we make the width equal 1 , the height tells us the gradient of the line.

Example

Here the width : height ratio is $2: 4$
This can be simplified to 1:2.
The width is 1 , and the height is 2 , so the gradient is 2 .

Year 8 Maths - Knowledge Organiser - Operations and equations with directed number - Autumn Term

17 Solve two-step equations

Use the bar model to write an equation and solve it to find the unknown value.
How does the diagram connect to the calculation?

76] 0	0000000000	$\begin{array}{r} 4 x+2 \\ -2 \end{array} \quad \begin{gathered} 10 \\ -2 \end{gathered}$
765	00000000	$4 x=8$
\square	00	$x=2$

18
Roots of positive numbers

Understanding square roots

A square number comes from multiplying a number by itself.
$4 \times 4=16$ therefore 16 is a square number
16 though also has another square root, this is because: $-4 x-4=16$
Every number has a positive and negative square root.

What is the inverse of squaring a number?

The inverse of squaring a number is to find the square root of a number.

| $4^{2}=16$ | Remember
 square root
 have a positive |
| :--- | :--- | :--- |
| $\sqrt{\mathbf{1 6}}=4$ and $-4<$and negative e
 value. | |

$$
\sqrt{\sqrt{1 \cdots i}} \quad \mathbf{S} \leftrightarrow \mathbf{D} \quad \begin{aligned}
& \sqrt{10} \\
& 3.162277 \ldots
\end{aligned}
$$

19 Order of Operations (BIDMAS)
This is the order in which we do calculations:
Brackets
Indices
Division or Multiplication Addition or Subtraction

REMEMBER

If you have a calculation that only has addition and subtraction, you go from left to right. The same applies if you only have division or multiplication.

Key Vocabulary:

$\left.\begin{array}{|c|c|c|}\hline \text { Key Vocabulary: } & \text { The number below the line } \\ \text { on a fraction. The number } \\ \text { represent the total number } \\ \text { of parts }\end{array}\right\}$

14
Adding or Subtracting Fractions
Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. Then just add or subtract the
numerators and keep the denominator the same

$$
\frac{2}{3}+\frac{4}{5}
$$

Multiples of $3: 3,6,9,12,15$
Multiples of $5: 5,10,15$..
LCM of 3 and $5=15$

$$
\frac{\frac{2}{3}}{\frac{4}{5}}=\frac{10}{15}=\frac{12}{15}
$$

$$
\frac{10}{15}+\frac{12}{15}=\frac{22}{15}=1 \frac{7}{15}
$$

15

Understand and use equivalent fractions.

Equivalent fractions have different numerators and denominators but share the same value.

16 Add and subtract proper fractions and mixed numbers.
Use the bar models to help you work out the calculation.
numbers, we need to look at how many parts mak
up the whole.

$$
\begin{aligned}
& 1 \frac{1}{4}+\frac{3}{8}=1 \frac{2}{8}+\frac{3}{8}=1+\frac{5}{8}=1 \frac{5}{8} \\
& 1 \frac{1}{4}+\frac{3}{8}=\frac{5}{4}+\frac{3}{8}=\frac{10}{8}+\frac{3}{8}=\frac{13}{8}=1 \frac{5}{8}
\end{aligned}
$$

$$
\text { The bar models show } \frac{13}{6} \text {. }
$$

$$
\text { There are } 6 \text { parts in the whole. }
$$

$$
13 \div 6=2 \text { remainder } 1
$$

$\frac{13}{6}=2 \frac{1}{6}$
The bar models show $3 \frac{2}{5}$.
There are 5 parts in the whole.
$3 \times 5=15$
$\frac{15}{5}+\frac{2}{5}=\frac{17}{5}$

Year 8 Mathematics Knowledge Organiser - Ratio and Scale

Key Vocabulary:		
1	Ratio	Used to compare values; says how much of thing there is, compared to another thing.
2	Proportion	When two ratios or fractions are equal to each other.
3	Multiplier	The number that we are multiplying by.
4	Placeholder	Something that holds a place in a number, e.g. zero.
5	Factors	Numbers that we can multiply together to get another number. Numbers that go into another number.
6	Equivalent	Having the same value.
7	Scale	The relationship/ratio between two sets of measurements.
8	Circumference	The perimeter (the distance around the outside) of a circle.
9	Diameter	The distance from one point on a circle to another point on a circle, through the centre. The longest distance across the circle.

10 Representing Ratios
Ratios can be represented in many different ways:

11 Ratio Notation

Ratios are represented as numbers with colons in between

 for example 3:1.The order of the numbers in the ratio is always important; this tells us what the information is about
Most ratios have two parts, but ratios can have more than two parts, for example 2:3:1.

$12 \quad$ Solving Problems in the Ratio 1:n

The ratio 1:n means any ratio beginning with 1 , followed by any number, for example 1:1, 1:4, 1:200 etc.
n can be any number, including decimals, but for this topic, n will always be an integer (a whole number).
13 Dividing Values into Given Ratios We can use a bar model to help us understand how to divide values into a given ratio.

Example

Share $£ 56$ in the ratio 2:5.
- £56

There are 7 parts altogether,
so we can share the $£ 56$ into
these 7 parts by doing $56 \div 7=8$.
Now we know that 1 part = $£ 8$, we can work out how much 2 parts are $(2 \times 8=£ 16)$ and how much 5 parts are ($5 \times 8=£ 40$).

We can check our answer is correct by adding together our amounts and seeing if we get our original value: $16+40=56$, so we are correct.

14 Expressing Ratios in Simplest Form

 We can simplify ratios by finding factors in all parts of the ratio.
Example

Simplify the ratio 12:18.
We know the highest factor of both 12 and 18 is 6 , so we can divide both numbers by 6 .

$12 \div 6=2$

$18 \div 6=3$
So, the simplified ratio is $2: 3$.
(Remember, the order is important, this shouldn't change!) 15 Comparing Ratios and Fractions We can use representations (like those in section 8) to help us compare ratios and fractions.

Example

	Ratio	Fraction Red $:$ Yellow	$\frac{2}{7}$ are red

16

Understanding π as a Ratio π is a number that represents the ratio of the circumference of a circle to the diameter of a circle, so $\pi=\frac{C}{d}$. This can be rearranged to find the formula for the circumference of a circle: $C=\pi \times d$. We can substitute values of the diameter into this formula to calculate the circumference of any circle.

Example

The radius of a circle is 8 m . Find the circumference. $C=\pi \times 8=25.132 \ldots \mathrm{~m}^{2}$
17 Understanding Gradient as a Ratio
Gradient (or slope) describes how steep a line is.
We can calculate the gradient of a line using the ratio of width : height of a triangle.
Once we make the width equal 1 , the height tells us the gradient of the line.

Example

Here the width : height ratio is $2: 4$
This can be simplified to 1:2.
The width is 1 , and the height is 2 , so the gradient is 2 .

14 Dividing an Integer by a Fraction

 We can use bar models to understand how to divide an integer by a fraction, e.g. $1 \div \frac{1}{4}=4$. We can link dividing by a fraction with multiplying by an integer to \qquad help us understand the relationship between the two. For example: $3 \div \frac{1}{4}=12$ and $3 \times 4=12$.
15 Dividing a Fraction by a Unit Fraction

We can use a fraction wall to help us divide a fraction by a unit fraction. Think about how many unit fractions we would need to make the original \qquad fraction. E.g. $\frac{1}{2} \div \frac{1}{16}=8$.

16 16 Understand

The reciprocal of a number is always 1 divided by the number.
\square Division is the same as multiplying by the reciprocal. A number multiplied by its reciprocal is always 1. For example: $7 \div \frac{1}{5}=35$ and $7 \times 5=35$.
17
Dividing any Pair of Fractions
Now that we know dividing by a number is the same a multiplying by it's reciprocal, we can apply this to divide any pair of fractions.
For example:
$5 \div \frac{2}{3}=5 \times \frac{3}{2}=\frac{15}{2}=7 \frac{1}{2}$
$\frac{5}{9} \div \frac{2}{3}=\frac{5}{9} \times \frac{3}{2}=\frac{15}{18}=\frac{5}{6}$
18 Multiplying and Dividing Improper and Mixed Fractions When multiplying mixed numbers, we can convert them into improper fractions first before multiplying the numerators and denominators, then simplifying. Another way would be to use a grid method, splitting up the mixed number into integers

	$\frac{4}{5}$	
1	2	
1	2	$\frac{4}{5}$
11	$\frac{12}{11}$	$\frac{24}{55}$

19 Multiplying and Dividing Algebraic Fractions

 Although we are using algebra, multiplying and dividing algebraic fractions follow the same rules as numerical fractions.

14 Ratio between Similar Shapes

 Corresponding lengths on similar shapes are always in the same ratio.
$3 \mathrm{~m}: 6 \mathrm{~m}$
$8 \mathrm{~m}: 16 \mathrm{~m}$
These lengths are in ratio so the rectangles are similar.
10 m

$3 m: 5 m$
$8 \mathrm{~m}: 10 \mathrm{~m}$
These lengths are not in ratio, so the rectangles are not similar.
15

Understanding Scale Factors

A scale factor tells us the ratio between corresponding measurements of an actual object and a copy of the object. If the scale factor is bigger than 1 , the copy will be larger. If the scale factor is less than 1 (e.g. $1 / 2$), the copy will be smaller.
16 Drawing and Interpreting Scale Diagrams Scale diagrams (or drawings) are used to represent a smaller or larger object, shape or image.
The scale used will depend on the reduction or enlargement of the object.
Some common scale ratios that are used:

- A medium sized wall map of the World (1:30,000,000 which represents 1 cm to 300 km)
A road map for motorists (1:250,000 which represents 1 cm to 2.5 km)
An Ordnance survey map for walkers or hikers (1:25,000 which represents 1 cm to 250 m)
- An architects drawing (1:100 which represents 1 cm to 1 m)

17
Interpreting Maps with Scale Factors
We can use scale factors to interpret maps.

Example

If the scale is $1: 25,000$, this means 1 cm on the map is $25,000 \mathrm{~cm}$ in real life.

Year 8 Mathematics Knowledge Organiser - Ratio and Scale

Key Vocabulary:		
1	Ratio	Used to compare values; says how much of thing there is, compared to another thing.
2	Proportion	When two ratios or fractions are equal to each other.
3	Multiplier	The number that we are multiplying by.
4	Placeholder	Something that holds a place in a number, e.g. zero.
5	Factors	Numbers that we can multiply together to get another number. Numbers that go into another number.
6	Equivalent	Having the same value.
7	Scale	The relationship/ratio between two sets of measurements.
8	Circumference	The perimeter (the distance around the outside) of a circle.
9	Diameter	The distance from one point on a circle to another point on a circle, through the centre. The longest distance across the circle.

10 Representing Ratios
Ratios can be represented in many different ways:

11 Ratio Notation

Ratios are represented as numbers with colons in between, for example 3:1.
The order of the numbers in the ratio is always important; this tells us what the information is about.
Most ratios have two parts, but ratios can have more than two parts, for example 2:3:1

12

Solving Problems in the Ratio 1:n

 The ratio 1:n means any ratio beginning with 1, followed by any number, for example 1:1, 1:4, 1:200 etcn can be any number, including decimals, but for this topic, n will always be an integer (a whole number).

Dividing Values into Given Ratios

We can use a bar model to help us understand how to divide values into a given ratio.

Example

Share $£ 56$ in the ratio 2:5.

£56

There are 7 parts altogether,
so we can share the $£ 56$ into
these 7 parts by doing $56 \div 7=8$.
Now we know that 1 part $=£ 8$, we can work out how much 2 parts are $(2 \times 8=£ 16)$ and how much 5 parts are $(5 \times 8=£ 40)$.

We can check our answer is correct by adding together our amounts and seeing if we get our original value: $16+40=56$, so we are correct.

14
Expressing Ratios in Simplest Form We can simplify ratios by finding factors in all parts of the ratio.

Example

Simplify the ratio 12:18.
We know the highest factor of both 12 and 18 is 6 , so we can divide both numbers by 6 .
$12 \div 6=2$
$18 \div 6=3$
So, the simplified ratio is $2: 3$.
(Remember, the order is important, this shouldn't change!)
15
Comparing Ratios and Fractions
We can use representations (like those in section 8) to help us compare ratios and fractions.

Example

$16 \quad$ Understanding π as a Ratio
π is a number that represents the ratio of the circumference
of a circle to the diameter of a circle, so $\pi=\frac{c}{d}$
This can be rearranged to find the formula for the circumference of a circle: $C=\pi \times d$.
We can substitute values of the diameter into this formula to calculate the circumference of any circle.

Example

The radius of a circle is 8 m . Find the circumference
$C=\pi \times 8=25.132 \ldots \mathrm{~m}^{2}$
17 Understanding Gradient as a Ratio
Gradient (or slope) describes how steep a line is
We can calculate the gradient of a line using the ratio of width : height of a triangle.
Once we make the width equal 1, the height tells us the gradient of the line.

Example

Here the width : height ratio is $2: 4$
This can be simplified to 1:2.
The width is 1 , and the height is 2 , so the gradient is 2 .

Year 8 Summer Term Mathematics Knowledge Organiser - Multiplicative Change

