Rayner Stephens

Curriculum

Intent

for
Maths

At Rayner Stephens High School, we believe that everyone can do maths. The intent of the mathematics curriculum is to provide students with a high-quality and ambitious curriculum which will allow all students to achieve their mathematical potential and prepare them well for everyday life and future employment. Through mathematics lessons, we promote mathematical thinking which will encourage students to develop conceptual understanding, to establish links between the different disciplines within maths and to provide the opportunity to apply this understanding to solve increasingly complex problems. In KS3, students are introduced to topics in mathematics using a concrete, pictorial, abstract approach to allow students to develop their fluency, reasoning and problem-solving skills. Topics are interleaved to allow students to improve their previous learning and allow them to develop application and skill links between the different areas of mathematics. In KS3, students are exploring topics in order to create the building blocks to prepare them for their GCSE studies in Years 10 and 11. Covering the disciplines of number, algebra, geometry, ratio, proportion, data handling and probability, students are given the opportunity to retrieve, affirm and extend their understanding as they progress on their mathematics journey through KS3 and KS4. Students will be encouraged to become fluent in the fundamentals, to be able to reason mathematically, by problem solving and be able to develop an argument or justification using mathematical language.

Rayner Stephens

Mathematics Learning Journey Higher Tier
(a) Higher Tier

Rayner Stephens

> Mathematics Learning Journey Foundation Tier

\pm

Data
Handling Circles
$A=\pi r^{2}$ Compound
Measures Circles
$A=\pi r^{2}$ Compound
Measures

Venn Dlagrams
ythagoras

Expanding Ple Charts
 Fractions Error Graphs paralle Lines Changing the $\begin{gathered}\text { Angles } \\ \text { Subject }\end{gathered}$ Inequalities

Year 9 - Mathematics

Year 9 - Mathematic						
Curriculum intent	Through mathematics lessons we promote mathematical thinking to allow all students to achieve their mathematical potential and engage in the study of mathematics. Using a mastery style approach to develop learners' fluency, reasoning and problem solving through a concrete, pictorial and abstract approach, building upon their learning from Year 7 and 8. As students progress through their learning topics from previous learning with be interleaved into future learning so students develop application and skill links between different areas of mathematics, whilst preparing students for their GCSE studies. Whilst retrieving learning taught in Years 7 and 8 and building upon the skills acquired, in Year 9 students begin with learning about angles adding to what they discovered through rotations and adding an understanding of how to find the size of angles through measurement and geometric facts. Moving on to studying proportional reasoning by building upon learning about ratio to solve more complex problems leading to more abstract approaches. Continuing with geometry, students consolidate area and perimeter including compound shapes and trapezia and understand how to solve problems with a variety of different shape types. Linking to proportionality, students will study how to understand and complete calculations with map scales and conversion of different units of measurements. Moving into the spring term, students will continue to will focus on geometry, in particular trigonometry and Pythagoras' Theorem, increasing their knowledge and understanding of where these concepts come from through representations before applying them in preparation for GCSE Mathematics in years 10 and 11 . Completing the term, students will begin to consolidate and further their algebraic notation, reasoning and problem skills using algebra and applying this to geometric and contextual problems studied earlier in the year and securing their use of formal algebraic notation. In the summer term, students will revisit probability and extend this to conditional probability and use of algebraic fractions in their calculations. To complete the year, students will further their geometric competency with constructions where they will apply their knowledge of shape properties to construct a variety of shapes, bearings, plans and elevations.					
Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Knowledge	Angles	Proportional Reasoning Area, Scale and Measurement	Area, Scale and Measurement (cont.) Pythagoras' and Trigonometry	Pythagoras' and Trigonometry (cont.) Forming and Solving Equations	Further Probability	Constructions
Skills	Draw and measure angles accurately,	Use scale factors for length, extending to	Apply area and perimeter principles to increasingly	Explore, understand and apply	Complete probability diagrams for independent	Understanding how to use mathematical equipment to

	using a protractor. Understand the notation in which angles and shapes are written. Understand and apply angle rules to differing geometric problems, including parallel lines, interior and exterior angles in polygons.	area and volume, and find lengths on similar shapes. Formalise proportion understanding to abstract examples using the constant of proportionality Show and build confidence in using different measuring devices and in different units for length, mass and capacity.	complex and compound shapes. Interpret scales on a variety of devices and determine true lengths using map scales. Explore, understand and apply Pythagorean theorem.	trigonometric ratios. Being able to understand and apply appropriate methods for finding a length of a side or size of an angle. Reinforce basic algebra skills. Reinforce solving equations in applied contexts. Understand how to simulate different context using algebra Link shape properties and understanding to algebraic methods.	and dependent probabilities of events Calculate probabilities for independent and dependent events. Solve probability problems involving algebraic notation, including algebraic fractions.	make accurate drawings. > Explore the different ways in which triangles and some quadrilaterals can be constructed. > Use and apply bearings to geometric problems. > Describe and draw shapes accurately using elevations.
Assessments	End of topic assessment: Angles	End of unit assessment: Proportional Reasoning	End of unit assessment: Area, Scale and Measurement.	End of Unit assessments: Pythagoras' and Trigonometry	End of unit assessment: Further Probability	End of unit assessment: Constructions.

				Forming and Solving Equations		
Enrichment	- Practise reading from a protractor with Angles Aliens Attack game: https://mathsf rame.co.uk/e n/resources/re source/470/A ngle-AlienAttack - What is important about angles in order for shapes to tessellate? Have a go at tessellating shapes and even try some similar to the famous Mathematicia n Escher! https://stema ctivitiesforkids. com/2019/10/ 08/create-a-simpletessellation/	- Using an image of your choice, can you increase or reduce it by a scale factor? You might want to draw it or use a computer. How can you ensure it stays in proportion? - Mixing Lemonade: Can you work out which is stronger? https://nrich.m aths.org/6870	- Measure things around your home! What can you use to measure them be creative. How does changing the mode or unit of measurement affect answers? - Create a plan of a garden or room. Can you use a scale to create a scale drawing of it?	- In a newspaper, how many statistics can you find? Consider why they have been used. - Delve deeper into what the Pythagoreans investigated with this article: https://nrich.mat hs.org/2721	- Watch the video clips to understand how we use probability to assess risk and how medications can reduce the risk. What factors influence Professor Spiegelhalter's decision? https://nrich.m aths.org/12165 - Play a game analyse the probabilities of you winning or losing. What affects your chances? What are the probabilities of these things happening?	- You've got to work out the direction to get to your friends who are in the park. Try estimating your bearing from objects/friends. See if your friends agree!

Year 9 Mathematics Autumn Term Knowledge Organiser - Angles

16 Interior and exterior angles in polygons

To find the sum of the interior angles in any polygon:
(number of sides - 2) x 180
The sum of the exterior angles in any polygon is 360°

Interior + Exterior angle $=180^{\circ}$
17 Basic angle facts

Angles on straight line equal 180°
$a+b=180^{\circ}$

| Angles around a point equal 360° |
| :---: | :---: |
| $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=360^{\circ}$ |

18 Angles in parallel lines

Right-angled triangle 3 sides

Corresponding angles are equal.

Alternate angles are equal.

Co-interior angles sum 180° (Sometimes called supplementary angles).

13 Best Value

When comparing two quantities to find the best value, both quantities must be calculated to their unit value to compare their price
1.2 kg for $£ 3.89$

700 g for $£ 2.14$

This is less money per gram, so it is the best value

14 Currency conversions

These ideas can be used to convert currencies or units of measure.
Example: If $£ 1$ is worth 9 French francs, convert..
i) $£ 14$ to Ff
ii) 49.50 Ff to $£$

15 Similar shapes

Year 9 Key Stage 3 Spring Term Knowledge Organiser: Area, Scale and Measurement

Key Vocabulary		
1	Measure	The act of measuring with an appropriate piece of equipment for the object/thing to be measured.
2	Accuracy	How close a measurement is to the actual value.
3	Length	The measurement from one end to the other.
4	Distance	The measurement of the space between two things.
5	Capacity	The amount that a container can hold.
6	Mass	The among of matter an object contains. The more matter an object has, the more that it will weigh.
7	Area	The amount of space a 2D shape covers.
8	Perimeter	The distance around the outside of a 2D shape. Perimeter is found by adding together the length of all the shape's sides.
9	Time	The measureable period during which an action or process continues (duration).
10	Compound Measures	A type of measure that involves two or more different units. For example: density if measured in $\mathrm{kg} / \mathrm{m} 3$ or speed is measured in m / s.
11	Scale	The ratio of the distance on the map to the distance on the ground. It shows what 1 cm on the map represents in the real world.
12	Bearing	The angle of direction in relation to north. Measured in degrees (in three figures) from north in a clockwise direction.

13	Units of measurements
Measurement of distance	Measurement of capacity /length include the units:
include the units:	
Metres	• Litres

15 Time

Measurements of time include:
seconds, minutes, hours, days, weeks, fortnights, months, and years.

- Centimetres
- Kilometres
- Millimetres
- Yards
- Feet
- Inches
- Millilitres
- Centilitres

Measurements of mass
include the units:

- Tonnes
- Grams
- Miles
- Kilograms

Converting between units, we use can use proportional reasoning.
For example:
Metric length conversions: Metric mass conversions

Metric capacity conversions:

14 Area

Formula for the area of common 2D shapes.
Squares and Rectangles: area $=$ length x width

Triangles

$$
\text { area }=\frac{\text { base } \times \text { perpendicular height }}{2}
$$

(perpendicular - at a right angle)
Parallelograms:

area $=$ base \times perpendicular height

$$
\text { area }=\frac{1}{2} \times(a+b) \times h
$$

For compound shapes, the shape will need to be broken down in the shapes that make the shape. All of the areas of the component shapes will need to be added together to find the area of the compound shape.

Time throughout the day is often
given using an analogue or digital clock
We often tell the time using either the 12 -hour or the 24 -hour clock.

12-hour clock	24-hour clock
1:25 pm	13:25
9:10 am	$09: 10$

We can use time measurements in many everyday calculations, from knowing how long bus journey will take to calculating speed.

16 Compound Measure Calculations

Speed $=\frac{\text { distance }}{\text { time }}$

Density $=\frac{\text { mass }}{\text { volume }}$
Pressure $=\frac{\text { force }}{\text { area }}$

17 Map Scales

Scale drawings allow us to draw large objects on a smaller scale while keeping them accurate - for example maps.

All scale drawings must have a scale on them. They are usually expressed as ratios.
Example: $1 \mathrm{~cm}: 100 \mathrm{~cm}$ This means that for every one cm on the map, the length will be 100 cm in real life.

18 Bearings

A bearing is an angle, measured clockwise from north. It must be given as three figures.

Bearing $=058^{\circ}$
ould be measured and drawn using a protractor sale to show distance from another be expected

Year 9 Key Stage 3 Spring Term Knowledge Organiser - Pythagoras' Theorem and Trigonometry

Year 9 KS3 Spring Term Knowledge Organiser - Forming and Solving Equations

Key Vocabulary		
1	Expression	A collection of one or more terms that can be made up of variables, constants, operators or grouping symbols.
2	Equation	A mathematical statement where each side of the equal sign are equal to the other.
3	Inverse	The opposite of another operation. For example: + is the inverse of -
4	Solve	To find the value of a variable that makes the equation true.
5	Form	When given a mathematical situation which can be described using algebraic expressions.
6	Variable	A symbol (usually a letter) for a value that isn't known yet.
7	Coefficient	A numerical constant quantity that is placed before a variable and shows multiplying of the variable in an algebraic expression or equation.
8	Expand	To multiply each term in the bracket by the expression outside of the bracket e.g.: $4(m+7) \equiv 4 m+28$ Or when there are two or more brackets together, to expand, each term in each bracket is multiplied by the other. E.g.: $(x+2)(x+3)=x^{2}+5 x+6$ It is the inverse of factorising.
9	Substitute	To replace a variable(s) in an algebraic expression with a value.
10	Evaluate	To find the value of an expression when the variable is replaced by a given number.

Solving one-step equations

Finding the value of an unknown, by identifying operations performed and doing the inverse operation:

Solving two-step Equations

Finding the value of an unknown, by identifying operations performed and doing the inverse operation:

Solving Equations involving fractions.
Finding the value of an unknown. To eliminate a denominator multiply every term by the denominator:

Solving Equations with unknowns on both sides
Add/subtract the smallest algebraic term from both sides, so that the variable is only on one side.

Forming Equations

Many of the situations where an equation is formed uses other areas of maths such as area, perimeter, money, angle facts etc.

Create an expression first using the information in the question and your mathematical knowledge
Once you have your equation, you then solve the equation using the balance method.

Example:

James thinks of a number
Kate's number is 14 less than James' number.
The sum of their numbers is 212 .
What is Kate's number?
Let James' number be n, this means Kate number $n-14$.

$$
\begin{gathered}
n+n-14=212 \\
2 n-14=212
\end{gathered}
$$

Then solve to find the value of n.
$n=113$, so Kate's number is 99.
Area: expanding double brackets.
When calculating area, we multiply the height x width. When multiplying dimensions using algebra, we put each expression into brackets

We don't need to write the x sign

$x^{2}+5 x+6$

Year 9 Key Stage 3 Summer Term Knowledge Organiser: Area, Scale and Measurement

Key Vocabulary		
1	Measure	The act of measuring with an appropriate piece of equipment for the object/thing to be measured.
2	Accuracy	How close a measurement is to the actual value.
3	Length	The measurement from one end to the other.
4	Distance	The measurement of the space between two things.
5	Capacity	The amount that a container can hold.
6	Mass	The among of matter an object contains. The more matter an object has, the more that it will weigh.
7	Area	The amount of space a 2D shape covers.
8	Perimeter	The distance around the outside of a 2D shape. Perimeter is found by adding together the length of all the shape's sides.
9	Time	The measureable period during which an action or process continues (duration).
10	Compound Measures	A type of measure that involves two or more different units. For example: density if measured in $\mathrm{kg} / \mathrm{m} 3$ or speed is measured in m / s.
11	Scale	The ratio of the distance on the map to the distance on the ground. It shows what 1 cm on the map represents in the real world.
12	Bearing	The angle of direction in relation to north. Measured in degrees (in three figures) from north in a clockwise direction.

13 Units of measurements
 Measurement of distance
 /length include the units:
 Measurement of capacity include the units:

- Metres
- Centimetres
- Kilometres
- Millimetre
- Yards
- Feet
- Inches
- Miles reasoning
For example:
Metric length conversions: Metric mass conversions:
Metric length conversions: $\overbrace{\text { Metric mass convers }}^{\text {anc }}$

Metric capacity conversions:

14 Area

Formula for the area of common 2D shapes
Squares and Rectangles: area $=$ length x width

$$
\text { area }=\frac{\text { base } \times \text { perpendicular height }}{2}
$$

(perpendicular - at a right angle)
Parallelograms:

area $=$ base \times perpendicular height

Trapezia:

- Litres
- Millilitres
- Centilitres

Measurements of mass
include the units.

- Tonnes
- Grams
- Kilograms

15 Time

Measurements of time include:
seconds, minutes, hours, days, weeks, fortnights, months, and years.

Time throughout the day is often
given using an analogue or digital clock
We often tell the time using either the 12 -hour or the 24 -hour clock.

12-hour clock	24-hour clock
1:25 pm	$13: 25$
$9: 10 \mathrm{am}$	$09: 10$

We can use time measurements in many everyday calculations, from knowing how long bus journey will take to calculating speed.

16 Compound Measure Calculations

Speed $=\frac{\text { distance }}{\text { time }}$
Density $=\frac{\text { mass }}{\text { volume }}$
Pressure $=\frac{\text { force }}{\text { area }}$

17 Map Scales

Scale drawings allow us to draw large objects on a smaller scale while keeping them accurate - for example maps.

All scale drawings must have a scale on them. They are usually expressed as ratios.
Example: $1 \mathrm{~cm}: 100 \mathrm{~cm}$ This means that for every one cm on the map, the length will be 100 cm in real life.

18 Bearings

A bearing is an angle, measured clockwise from north. It must be given as three figures.

For compound shapes, the shape will need to be broken down in the shapes that make the shape. All of the areas of the component shapes will need to be added together to find the area of the compound shape.

Bearing $=058^{\circ}$

Bearings should be measured and drawn using a protractor When drawing bearings, you may also be expected to use a scale to show distance from another object/place.

Year 9 Key Stage 3 Summer Term Knowledge Organiser - Pythagoras' Theorem and Trigonometry

Year 9 KS3 Summer Term Knowledge Organiser - Forming and Solving Equations

Key Vocabulary		
1	Expression	A collection of one more terms that can be made up of variables, constants, operators or grouping symbols.
2	Equation	A mathematical statement where each side of the equal sign are equal to the other.
3	Inverse	The opposite of another operation. For example: + is the inverse of -
4	Solve	To find the value of a variable that makes the equation true.
5	Form	When given a mathematical situation which can be described using algebraic expressions.
6	Variable	A symbol (usually a letter) for a value that isn't known yet.
7	Coefficient	A numerical constant quantity that is placed before a variable and shows multiplying of the variable in an algebraic expression or equation.
8	Expand	To multiply each term in the bracket by the expression outside of the bracket e.g.: $4(m+7) \equiv 4 m+28$ Or when there are two or more brackets together, to expand, each term in each bracket is multiplied by the other. E.g.: $(x+2)(x+3)=x^{2}+5 x+6$ It is the inverse of factorising.
9	Substitute	To replace a variable(s) in an algebraic expression with a value.
10	Evaluate	To find the value of an expression when the variable is replaced by a given number.

Solving one-step equation

Finding the value of an unknown, by identifying operations performed and doing the inverse operation:

Solving two-step Equations

Finding the value of an unknown, by identifying operations performed and doing the inverse operation:

Solving Equations involving fractions.
Finding the value of an unknown. To eliminate a denominator, multiply every term by the denominator:

Solving Equations with unknowns on both sides

Add/subtract the smallest algebraic term from both sides, so that the variable is only on one side.

Forming Equation

Many of the situations where an equation is formed uses other areas of maths such as area, perimeter, money, angle facts etc.

Create an expression first using the information in the question and your mathematical knowledge.
Once you have your equation, you then solve the equation using the balance method.

Example:

James thinks of a number.
Kate's number is 14 less than James' number
The sum of their numbers is 212 .
What is Kate's number?
Let James' number be n, this means Kate number $n-14$

$$
\begin{gathered}
n+n-14=212 \\
2 n-14=212
\end{gathered}
$$

Then solve to find the value of n.
$n=113$, so Kate's number is 99 .

Area: expanding double brackets.

When calculating area, we multiply the height x width When multiplying dimensions using algebra, we put each expression into brackets.

We don't need to write the x sign

$$
\underset{x+3}{(x+2)}(x+3)
$$

$x^{2}+5 x+6$

