

How we teach calculations:

Moving Towards Mastery Policy for Mathematics January 2019

The following calculation policy has been revised in September 2018 to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in EYFS follows the **'Early Years Outcomes'** EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

Maths teaching across the school will now be incorporating a 'Mastery' Approach to learning from Year 1 to Year 3 in 2018 and Year 1 to Year 4 in 2019. This reflects national requirements to allow all children to access skills, methods and concepts within their year group. Children are assessed against year group expectations leading to their mastery of skills over the academic year. At the end of blocks of work children will be deemed to be working towards, meeting the national expectations or working with greater depth. Within every year group, fluency is a high priority in order for a child to 'master' a concept. In order to provide depth of understanding, children will be given opportunities to problem solve, reason and explain.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons, although skills will still need careful teaching and practice. Staff are now using a 'mastery' approach to teaching which involves several stages to support a concept.

Choosing a calculation method:

During a lesson, children can explore and choose a concrete, pictorial or abstract way of working. Teachers will model all three methods of working to encourage children to practically use equipment, to visually see a concept, and then to apply the prior learning in order to utilise a more abstract method which involves using symbols, digits and working mentally.

Concrete Representation

The practical **stage**. Children are first introduced to an idea/skill/concept by physically acting it out with real objects, this could also involve the outdoor environment. This is a **'hands on'** stage using real objects linked to real-life and the wider curriculum and/or mathematical equipment, (e.g. five and ten frames, Dienes, Numicon etc.) and it is the prerequisite for a **CONCEPTUAL UNDERSTANDING**.

Pictorial Representation

The **image stage**. A child must of attained a sufficient understanding at the practical, **CONCRETE** experiences performed and can now relate them to **PICTORIAL** representations, such as a **DIAGRAM** or **PICTURES** of the problem. **PICTORIAL** representations, such as the bar model, can also be used to aid a child's understanding.

Abstract Representation

The **symbolic stage**. Children must be taught how to represent problems by using **ABSTRACT** mathematical notation, e.g. $12 \times 2 = 24$. The previous two methods of working out should facilitate the transition into enabling all children to complete abstract working out with understanding of what they are doing.

Addition

	Objective	Concrete	Pictorial	Abstract				
У1	Number bonds of 5, 6, 7, 8, 9 and 10	Use cubes to add two single digit numbers together as a group or in a bar. Use of part whole models at this stage will scaffold future learning.	Use pictures to add two single digit numbers together as a group or in a bar.	6 + 4 = 10 $4 + 6 = 10$ $10 = 6 + 4$ $10 = 4 + 6$ Use the part-part-whole diagram as shown to move into abstract working.				
У1	Counting	Start with the larger number on a bead or with items and count on the smaller number to find the answer. $\underbrace{5}_{678}$	Use a number line to count on in ones. Number Line 0-30 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2	5 + 3 = 8 3 + 5 = 8 8 = 3 + 5 8 = 5 + 3				

Addition

	Objective	Concrete	Pictorial Abstract			
У1	Adding 2 single digit numbers (Regrouping to make 10)	7 + 4 = 11 Start with the bigger number and use the smaller number to make 10.	7 + 4 = 11 $7 + 3 = 10$ $10 + 1 = 11$	7 + 4 = 11		
У2	Adding 3 single digit numbers	3 + 5 + 7 = 15 Put 3 and 7 together to make 10 if possible. Then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	3+5+7=15 Combine the two numbers that make 10 and then add on the remainder.		

	Objective	Concrete	Pictorial	Abstract
У2	Column method without regrouping	Add together the ones first, then add the tens. Use either Dienes/Numicon/10s/1s first before moving onto place value counters. 32 + 25 =	After physically using apparatus and place value counters, children can draw the counters to help them solve additions. 32 + 25 = 57 $10 10 10 10 10$	32+25=57 30+2 20+5 50+7 Expanded method used to consolidate place value knowledge first.
У2	Column method with regrouping	105 15 Make both 105 15 105 <th>Children can draw pictures of counters or 10s/1s as above to help them to solve additions.</th> <th>37+45=82 30+7 40+5 70+12 Expanded method.</th>	Children can draw pictures of counters or 10s/1s as above to help them to solve additions.	37+45=82 30+7 40+5 70+12 Expanded method.

Addition

	Objective	Concrete	Pictorial	Abstract
¥3/4	Column method with regrouping. Y3 - 3 digit Y4 - 4 digit	Make both numbers on a place value grid.	100's 10's 1's	2 4 7 + 3 2 9 5 7 6 *By Year Four children will progress
		As children move on to decimals, money and decimal place value counters can be used to aid understanding.	Children can draw pictures of counters or Hs, Ts and Os transitioning from apparatus to support learning and understanding. *Addition of money to use £ and p separately in pictorial stage.	on to adding four digit numbers. As children progress, decimals and money can be introduced here.
¥5/6	Column method with regrouping	Consolidation of understanding and u with more than four digits and exter numbers with up to three decimal pla *Practical apparatus available exter with up to three decimal places.	using numbers nding by adding aces. ds to numbers 14 7 4 5 + 6 4 5 5 3 9 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		Sub	traction				
	Objective	Concrete	Pictorial	Abstract			
У1	Taking away ones	Using concrete apparatus such as cubes, counters etc. to show how objects can be physically taken away.	Making use of drawn representations to show what has been taken away. 5-2=3	5 - 2 = 3			
У1	Counting Back	Make the largest number in the number sentence. Move beads along as children count back in ones. Including use of tens frames.	Counting back on a number line.	Mental calculation of thinking of 14 and counting back 5. Use of fingers to help if needed. 14 - 5 = 9			

У1	Find the	Compare amounts and objects to find	Counting on to find the difference.	Sarah has 8 marbles.	
	difference	the difference.	Drawing bars to find the difference.	Tom has 3 marbles. Find the difference between the number of marbles the children have. 8 – 3 = 5	
	Objective	Concrete	Pictorial	Abstract	
У2	Column method without regrouping	Use apparatus - Dienes, Numicor or counters to make the bigger number then take the smaller number away. Counters show how to partition numbers to subtract. Again starting with the largest number.	Draw pictures of counters or 10s and 1s to represent the numbers - starting with the largest. These can be set out as they would be in columns. 47 - 25 = 10s 1s 88000 88888 000	Practical and pictorial methods lead onto 'partition subtraction'.	

	Objective	Concrete	Pictorial	Abstract
--	-----------	----------	-----------	----------

Subtraction

y3 y4	Column method without regrouping *Y4 children will use similar methods with four digit numbers	Use Dienes/Base 10 to start with before moving onto place value counters. Revisit without regrouping before moving onto exchanging. 428-115=313	Draw counters onto a place value grid and indicate what has been taken away and where exchanges have been made if needed.	Practical and pictorial methods lead onto 'formal written method of compact column addition - fundamental to addition throughout the rest of Key Stage Two. 428 - 115 =
У4 У5 У6	Column method for subtraction	Compact column subtraction consolidate four digits and extended by adding numl place value in each column. *Practical apparatus available extends to 5838 -2192 3446 281	s understanding with/without regroup bers with up to three decimal places. 2 o numbers with up to three decimal pl 3''' 3''' 3''' 3''' 3'''' 3''''''''''	ing. Numbers contain more than Zeros can been used to show the aces. - 036 · 080kg 69 · 339kg
		Mult	iplication	
	Objective	Concrete	Pictorial	Abstract

У1	Repeated addition	Make use of different objects to add equal groups together. $3 \times 2 = 6$ $2 \times 5 = 10$	Repeated addition can be used with pictures/number lines/bar models to illustrate problems.	Write addition sentences to describe objects and pictures.
		2 + 2 + 2 2 + 2 + 2 2 + 2 + 2 2 + 2 + 2 5 + 5	2+2+2=6 2 2 2 2 2 2 2 2 2 2 2 2 2	
У1 У2	Arrays -	Create arrays using counters/cubes to	Draw arrays in different	Use of arrays can be used to
	commutative	show mumplication semences.	illustrate commutative	multiplication sentence and revise
	multiplication		multiplication sentences.	repeated addition.
			6x2=12 6 x 2 = 12 2 x 6= 12 6 x 2 = 12 2 x 6 = 12	5+5+5= 15 0 + 3+3+3= 15
			*Arrays can be linked with areas of rectangles.	3+3+3+3+3+3 5×3=15 3×5=15

Objective Concrete Pictorial Abstract	
---------------------------------------	--

Multiplication

ODjective Concrete Adstract

Multiplication

У5 У6	Multiply 4 digit numbers by 1 or 2 digit numbers using	Where needed, children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note	Revis progr 3652 1342 3.19	sit t ress 2 x 8 x 1 x 8	he e> ing o 3 = 29 8 = 2 = 25.	(panc nto c 9,216 4,15(52	ded m a comp 6	ethod a pact me	s taught in Y4 if necessary, before thod of working out for larger numbers.
У6	formal methods Multiply one digit	tens which they note below.	× 2		3 9 ⁵	6 2"	5 I'	286	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	numbers with up to two decimal places by whole numbers		2	x 2	3 8 5	•	1	9	Use short multiplication (see Y5) to multiply numbers with more than 4-digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.

	Objective	Concrete	Pictorial	Abstract					
У1 У2	Sharing	I have 12 counters, can you share them	Children can use pictorial	Share 12 carrots between 2					
¥2		equally between 2 people?	representations or bar models	rabbits					
		After making 12 with Numicon how can it be shared with the 2 plates?	to share out the quantities. $1 2 \div 2 = 6$ $2 2 2 2 2 2 2$ $1 2$	12 ÷ 2 = 6					
¥2	Sharing and	Divide quantities into equal arouns							
	Grouping	Make use of counters, cubes, objects or place value counters to aid understanding.	Use bars of 3 to make 15 and count how many bars were used. Use of circles and share number of dots between.	15 ÷ 3 = 5					

	Objective	Concrete	Pictorial	Abstract					
У2 У3	Division with arrays	Make links from division to multiplication by creating an array and thinking of the number sentences that can be created. $18 \div 3=6$ $18 \div 6=3$ $3 \times 6=18$ $6 \times 3=18$	Draw an array and make use of lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $18 \div 3 = 6$ $18 \div 6 = 3$ $3 \times 6 = 18$ $6 \times 3 = 18$					
У3 У4	Short Division	Make use of place value counters to divide u can be replaced by pictures at the next stag written method dependent on understanding Example without remainder 96 ÷ 3 = 32 The stage of the	sing the short division method. (Counters ge, though may move swiftly into the 3 2 3 42 3 42 30 42 30 12 30 3 3 12 30 3 12 30 3 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 10 12 3 10 12 10 10 12 10 10 10 10 10 10 10 10	Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all.					
	Objective	Concrete	Pictorial	Abstract					

r	remainders	groups and see how much is left over e.g. 15 ÷2 = 7 remainder 1	number line then see how many more you need to jump to find a remainder. 15 ÷2 = 7 remainder 1	Complete written division statements and show the remainder using 'r'.							
			Image: Cond Brian Bry Lise 2001 Image: Cond Brian Bry Lise 2001	31÷8=3 remainder 7 7 7 dividend divisor grotient remainder							
У5 У6 t	Short division up to 4 digits by a single digit with remainders	$364 \div 3 =$ 121 rem 1 3 364	Once competent in divisions with a remainder, children can begin to express as a fraction or a decimal according to the context.								
r		Use of place value counters to aid understanding.	1 8 6 1/5 5 9 ⁴3 ³1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

		1	1, 6[8 5 0 0 1 1 - 1	5 6 5 4 1 8 5 4 4 2 1 1 1	· · · · · · · · · · · · · · · · · · ·	· 2 · 6 · 6 · 6 · 6	6		26 226 224 1	5	6	For larger numbers, jotting multiples by the side of the calculation will prevent errors. The encouragement of partitioning the multiples will also add speed and accuracy.
¥5/6	Using factors to divide up to 4 digits by 2 digit numbers (works when the divisor is not prime)	7 6 4	5 1 7 0	6 2 5 3 2	0 6 36 1 6	··· 0050	2/6*	- 4	-	3	1	5	 Note down the factors of 24 then choose the most suitable Then, in any order, divide by the first factor. Divide the answer from the first calculation by the second factor.