Rose Wood Academy

How we teach calculations: **Mastery Policy for Mathematics** September 2024 The following calculation policy has been revised in September 2018 to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in EYFS follows the **'Early Years Outcomes'** EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

Maths teaching across the school will now be incorporating a 'Mastery' Approach to learning from Year 1 to Year 3 in 2018 and Year 1 to Year 4 in 2019. This reflects national requirements to allow all children to access skills, methods and concepts within their year group. Children are assessed against year group expectations leading to their mastery of skills over the academic year. At the end of blocks of work children will be deemed to be working towards, meeting the national expectations or working with greater depth. Within every year group, fluency is a high priority in order for a child to 'master' a concept. In order to provide depth of understanding, children will be given opportunities to problem solve, reason and explain.

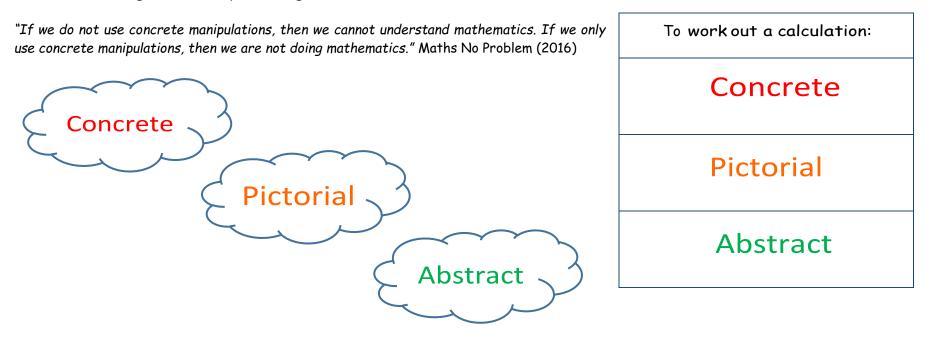
Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons, although skills will still need careful teaching and practice. Staff are now using a 'mastery' approach to teaching which involves several stages to support a concept.

Choosing a calculation method:

During a lesson, children can explore and choose a concrete, pictorial or abstract way of working. Teachers will model all three methods of working to encourage children to practically use equipment, to visually see a concept, and then to apply the prior learning in order to utilise a more abstract method which involves using symbols, digits and working mentally.

Concrete Representation


The practical **stage**. Children are first introduced to an idea/skill/concept by physically acting it out with real objects, this could also involve the outdoor environment. This is a **'hands on'** stage using real objects linked to real-life and the wider curriculum and/or mathematical equipment, (e.g. five and ten frames, Dienes, Numicon etc.) and it is the prerequisite for a **CONCEPTUAL UNDERSTANDING**.

Pictorial Representation

The **image stage**. A child must of attained a sufficient understanding at the practical, **CONCRETE** experiences performed and can now relate them to **PICTORIAL** representations, such as a **DIAGRAM** or **PICTURES** of the problem. **PICTORIAL** representations, such as the bar model, can also be used to aid a child's understanding.

Abstract Representation

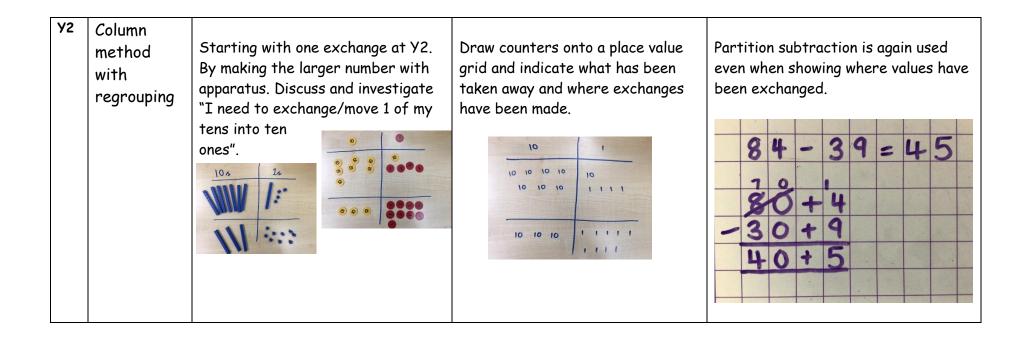
The **symbolic stage**. Children must be taught how to represent problems by using **ABSTRACT** mathematical notation, e.g. $12 \times 2 = 24$. The previous two methods of working out should facilitate the transition into enabling all children to complete abstract working out with understanding of what they are doing.

Addition

	Objective	Concrete	Pictorial	Abstract
У1	Number bonds of 5, 6, 7, 8, 9 and 10	200 BB0 000 B00	6 ** ** ** pat whate (4) pat * * *	6 + 4 = 10 4 + 6 = 10 10 = 6 + 4 10 = 4 + 6
		Use cubes to add two single digit numbers together as a group or in a bar. Use of part whole models at this stage will scaffold future learning.	Use pictures to add two single digit numbers together as a group or in a bar.	Use the part-part-whole diagram as shown to move into abstract working.
У1	Counting	Start with the larger number on a bead or with items and count on the smaller number to find the answer. $ \underbrace{5}{6 + 7 + 8} $	Use a number line to count on in ones.	5 + 3 = 8 3 + 5 = 8 8 = 3 + 5 8 = 5 + 3

Addition

	Objective	Concrete	Pictorial	Abstract
У1	Adding 2 single digit numbers (Regrouping to make 10)	 7 + 4 = 11 Start with the bigger number and use the smaller number to make 10. 	7 + 4 = 11 $3 1$ $7 + 3 = 10$ $10 + 1 = 11$	7 + 4 = 11
¥2	Adding 3 single digit numbers	3 + 5 + 7 = 15 Put 3 and 7 together to make 10 if possible. Then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	3+5+7=15 Combine the two numbers that make 10 and then add on the remainder.

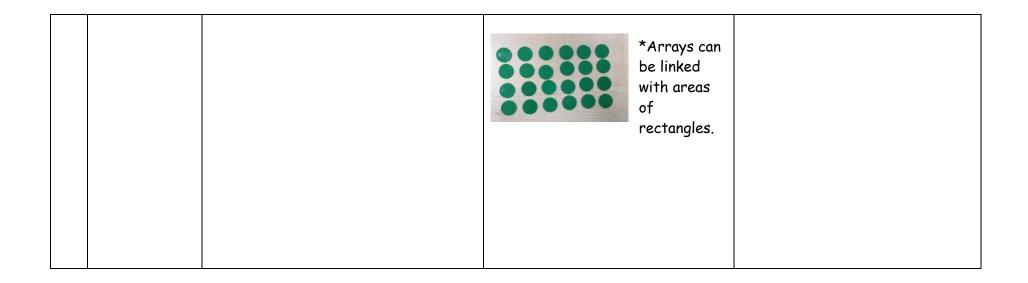

	Objective	Concrete	Pictorial	Abstract
У2	Column method without regrouping	Add together the ones first, then add the tens. Use either Dienes/Numicon/10s/1s first before moving onto place value counters. 32 + 25 =	After physically using apparatus and place value counters, children can draw the counters to help them solve additions. 32 + 25 = 57 $(0) (0) (0) (1) (1)$	32+25=57 30+2 20+5 50+7 Expanded method used to consolidate place value knowledge first.
У2	Column method with regrouping	10-5 1-5 Make both numbers on a place value grid. 10-5 1-5 Add up the ones, then exchange 10 ones for 1 ten.	Children can draw pictures of counters or 10s/1s as above to help them to solve additions.	37+45=82 30+7 40+5 70+12 Expanded method.

Addition

	Objective	Concrete	Pictorial	Abstract
¥3/4	Column method	Make both numbers on a place value grid.	100's 10's 1's	247
	with regrouping.			+ 3 2 9 5 7 6
	Y3 - 3 digit Y4 - 4 digit	Add up the ones and exchange the 10 ones for 1 ten.	100's 10's 1's	*By Year Four children will progress on to adding four digit numbers. As children progress, decimals and money can be introduced here.
		As children move on to decimals, money and decimal place value counters can be used to aid understanding.	Children can draw pictures of counters or Hs, Ts and Os transitioning from apparatus to support learning and understanding. *Addition of money to use £ and p separately in pictorial stage.	
¥5/6	Column method with regrouping	Consolidation of understanding and with more than four digits and ex- numbers with up to three decimal *Practical apparatus available ext with up to three decimal places.	d using numbers tending by adding places. + 64	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

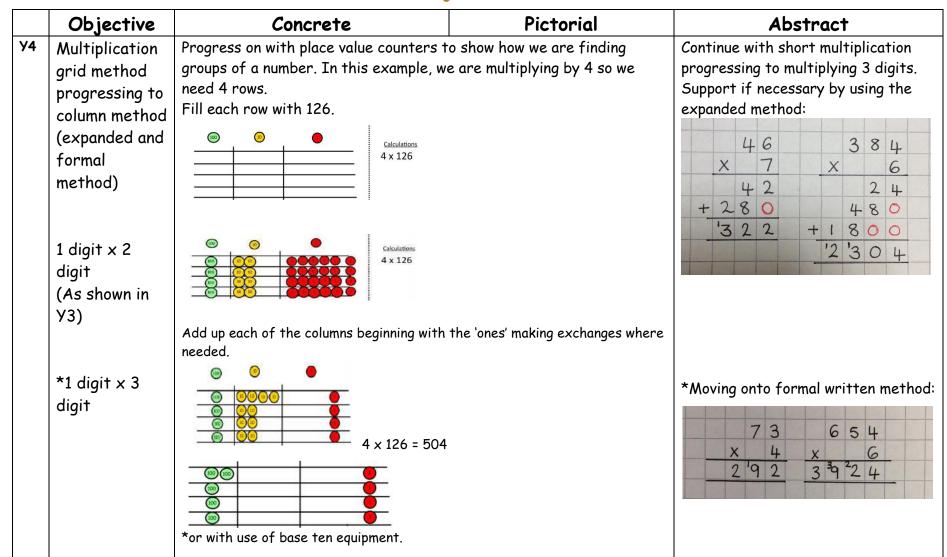
		Sul	btraction	
	Objective	Concrete	Pictorial	Abstract
У1	Taking away ones	Using concrete apparatus such as cubes, counters etc. to show how objects can be physically taken	Making use of drawn representations to show what has been taken away. 5-2=3	5 - 2 = 3
У1	Counting Back	Make the largest number in the number sentence. Move beads along as children count back in ones. Including use of tens frames.	Counting back on a number line.	Mental calculation of thinking of 14 and counting back 5. Use of fingers to help if needed. 14 – 5 = 9

У1	Find the difference	Compare amounts and objects to find the difference. Use counters or cubes to make bars to find the difference. Basic bar models help to show the difference.	Counting on to find the difference.	Sarah has 8 marbles. Tom has 3 marbles. Find the difference between the number of marbles the children have. 8 - 3 = 5
	Objective	Concrete	Pictorial	Abstract
У2	Column method without regrouping	Tens Tens Tens Tens Tens Tens Tens Counters Tens Tens Counters Tens Tens Counters Tens Tens Tens Counters Tens	Draw pictures of counters or 10s and 1s to represent the numbers - starting with the largest. These can be set out as they would be in columns. $\frac{47 - 25 =}{108 \times 38}$	Practical and pictorial methods lead onto 'partition subtraction'.



Subtraction

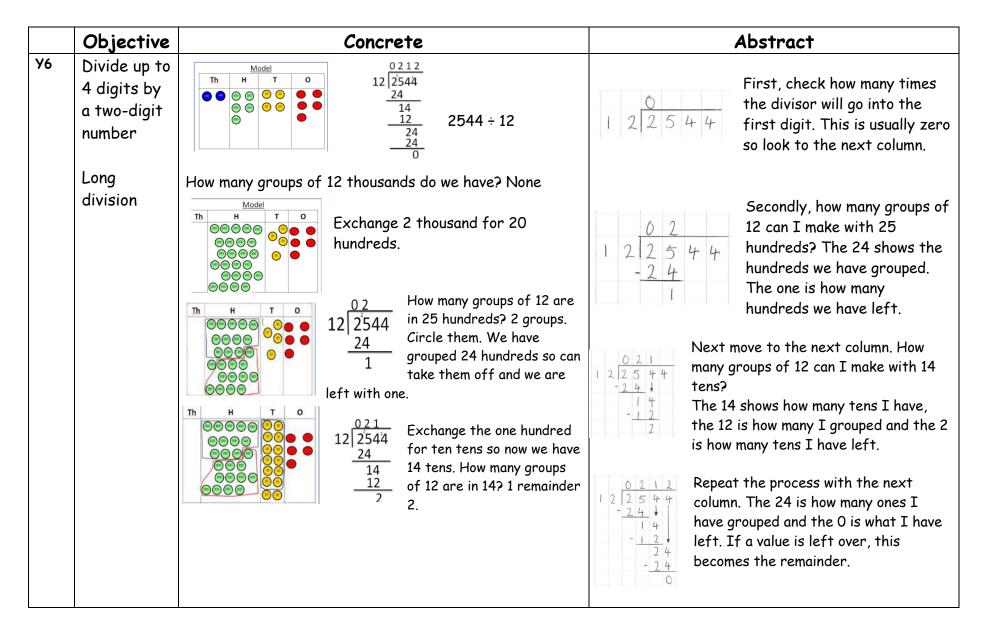
	Objective	Concrete	Pictorial	Abstract
У3 У4	Column method without regrouping	Use Dienes/Base 10 to start with before moving onto place value counters. Revisit without regrouping before moving onto exchanging.	Draw counters onto a place value grid and indicate what has been taken away and where exchanges have been made if needed.	Practical and pictorial methods lead onto 'formal written method of compact column addition – fundamental to addition
	*Y4 children will use similar methods with four digit numbers	428-115=313 428-115=313	100 10 1 ו•• × 428-115=313	throughout the rest of Key Stage Two. 428-115= 428 - 115 113
У4 У5 У6	Column method for subtraction	Compact column subtraction consolidate four digits and extended by adding num place value in each column. *Practical apparatus available extends t	bers with up to three decimal places.	Zeros can been used to show the
		$5\frac{5}{8}'38 + 729$ $-2192 - 191$ $3446 281$	% %	'1']Ø'5 · 3¼ '1 9 kg - ○36 · ○80 kg 69 · 339 kg


Multiplication

	Objective	Concrete	Pictorial	Abstract
У1	Repeated addition	Make use of different objects to add equal groups together. $3 \times 2 = 6$ 2 + 2 + 2 2 + 2 + 2	Repeated addition can be used with pictures/number lines/bar models to illustrate problems.	Write addition sentences to describe objects and pictures.
У1 У2	Arrays – showing commutative multiplication	Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations or bar models to illustrate commutative multiplication sentences.	Use of arrays can be used to compose more than one multiplication sentence and revise repeated addition. $5+5+5=15$ $3+3+3+3=15$ $5\times3=15$ $3\times5=15$

	Objective	Concrete	Pictorial	Abstract
У3	Multiplication grid method 1 digit × 2 digit	Links with arrays to introduce the grid method by using counters. (3 rows of 10 & 3 rows of 2). $3 \times 12 = 36$ Move on to Dienes/Numicon/counters to move onto a compact method for larger problems. E.g. $3 \times 32 = 96$ 3 rows of 32. X 30 2 2 1000	Children can draw pictures to show the work they have done with place value counters and move away from practical resources in a way that they understand. Level of detail in pictures is not needed - a child's understanding of their representation is more important.	Transition into abstract working is always the desired outcome. Start with multiplying by one digit numbers and showing the clear addition alongside the grid drawn. $\underbrace{\boxed{X 30 2}}_{3 90 6}_{9$

Multiplication


	Mu	ltip	licat	ion
--	----	------	-------	-----

	Objective	Concrete	Abstract
У5 У6 У6	Multiply 4 digit numbers by 1 or 2 digit numbers using formal methods Multiply	Where needed, children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Revisit the expanded method as taught in Y4 if necessary, before progressing onto a compact method of working out for larger numbers. $3652 \times 8 = 29,216$ $1342 \times 18 = 24,156$ $3.19 \times 8 = 25.52$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	one digit numbers with up to two decimal places by whole numbers		$3 \cdot 19$ $\times 8$ $25' \cdot 5'2$ Use short multiplication (see Y5) to multiply numbers with more than 4-digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2 d.p. by a single digit.

	Objective	Concrete	Pictorial	Abstract
У1 У2	Sharing	I have 12 counters, can you share them equally between 2 people?	Children can use pictorial representations or bar models to share out the quantities. $12 \div 2 = 6$ 2222222	Share 12 carrots between 2 rabbits 12 ÷ 2 = 6
y2	Sharing and Grouping	Divide quantities into equal groups. Make use of counters, cubes, objects or place value counters to aid understanding.	Use bars of 3 to make 15 and count how many bars were used. Use of circles and share number of dots between.	15 ÷ 3 = 5

	Objective	Concrete	Pictorial	Abstract
У2 У3	Division with arrays	Make links from division to multiplication by creating an array and thinking of the number sentences that can be created.	Draw an array and make use of lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences.
		18÷3=6 18÷6=3 3×6=18	$ \begin{array}{r} 18 \div 3 = 6 \\ X \times \times \times \times \times \\ X \times \times \times \times \\ X \times \times \times \times \\ X \times \times \times \\ X \times \times \times \\ X \times \times \\ X \times \\ X$	$18 \div 3 = 6$ $18 \div 6 = 3$ $3 \times 6 = 18$ $6 \times 3 = 18$
У3 У4	6 \times 3 = 18Short DivisionMake use of place value counters to divide using the short division method. (Counter can be replaced by pictures at the next stage, though may move swiftly into the written method dependent on understanding.32Example without remainder 96 \div 3 = 323 $\bigcirc \bigcirc $		ye, though may move swiftly into the 3 2 3 000000000000000000000000000000000000	Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no
		Hundreds Tens Ones Image: Constraint of the second state of the second stat	ing: 42 30 $1230 \div 3 = 10 12 \div 3 = 410 + 4 = 14$	calculating of remainders at all. 3 2 3 9 6 3 6 8 21
	Progressing to exchanging and remainders where appropriate.			

	Objective	Concrete	Pictorial	Abstract
У5 У6	Division with remainders	Divide objects or items between groups and see how much is left over e.g. 15 ÷2 = 7 remainder 1	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. 15 ÷2 = 7 remainder 1	Complete written division statements and show the remainder using 'r'.
			Image: Construction Image: Construction	31÷8=3 remainder 7 7 7 9 dividend divisor quotient remainder
У5 У6	Short division up to 4 digits by a single digit with remainders	$364 \div 3 = \frac{121 \text{ rem } 1}{3 \ 364}$	Once competent in divisions with a remainder, children can begin to express as a fraction or a decimal according to the context.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	r eniunuel 3	Use of place value counters to aid understanding.	1 8 6 1/5 5 9 43 31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

		Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	1 1 $356 \div 26 = 456$ $00456 \div 26 = 456$ $2611856 \div 26 = 456$ $2611856 \div 26 = 456$ $1044 \downarrow$ 145 - 156 = 156 -156 = -156 $00456 \div 26 = 26$ $1056 \div 26 = 26$ 1056
¥5/6	Using factors to divide up to 4 digits by 2 digit numbers (works when the divisor is not prime)		1) Note down the factors of 24 then choose the most suitable 1 2 6 0 67560 7560 1260 67560 0315 41260 1260 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 150000 150000 15000000000000000000000000000000000000