Mass of the p must always equal the mass a of the r Balance the following:	When a gas is produced during a reaction, why might c the mass go down? (Hint: think about where the gas may go)	If 9g of magnesium reacts completely with 6g of oxygen what is the mass of magnesium oxide produced? 1. 5g	(c
$H_{2} + 0_{2} \longrightarrow H_{2}0$ $Na + Cl_{2} \longrightarrow NaCl$ $Br_{2} + KI \longrightarrow I_{2} + KBr$ $N_{2} + H_{2} \longrightarrow NH_{3}$	Write the equation for when magnesium reacts with oxygen.	 2. 10g 3. 15g 4. 20g 5. 25g 	۱ c
Complete the following sentences The relative formula mass is the () of a compound. It is the sum of the r atomic masses (A _r) of the atoms	What happens to the mass of the product from the question above?	Show that mass is conserved in the following equation.	
Calculate the relative formula mass for the following. Show your working out. A _r of C = 12		equation. A_r of H = 1 A_r of O = 16	
A_r of H = 1 A_r of O = 16 A_r of N = 14 Example:	% mass = $\frac{A_r \times \text{number of atoms} \times 100}{M_r \text{ of the compound}}$ Using the equation above, calculate the % mass of sodium	$2H_2 + O_2 \longrightarrow 2H_2O$	F
CO_2 $12 + (16 \times 2)$ 12 + 32 = 44	A _r of Na = 23 A _r of Cl = 35.5		
H ₂ 0			
CH4			
NH ₄ NO ₃			

Secondary

AQA Chemistry – Quantitative Chemistry Unit 4.3 (Foundation) Answers

Mass of the product must always equal the mass of the reactants . Balance the following:	When a gas is produced during a reaction, why might the mass go down? (Hint: think about where the gas may go) The gas may be released into the environment	If 9g of magnesium reacts completely with 6g of oxygen what is the mass of magnesium oxide produced?	Cor con
$2H_{2} + 0_{2} \longrightarrow 2H_{2}0$ $2Na + Cl^{2} \longrightarrow 2NaCl$ $Br_{2} + 2KI \longrightarrow I_{2} + 2KBr$ $N_{2} + 3H_{2} \longrightarrow 2NH_{3}$	Write the equation for when magnesium reacts with oxygen. $2Mg + O_2 \longrightarrow 2MgO$	 2. 10g 3. 15g 4. 20g 	Wh diss con
Complete the following sentences	What happens to the mass of the product from the question above?	5. 25g	con
The relative formula mass is the (\mathbf{M}_{r}) of a compound. It is the sum of the relative atomic masses (\mathbf{A}_{r}) of the atoms.	The mass increases because oxygen is added from the environment.	Show that mass is conserved in the following equation. Use the A _r values to calculate the M _r of both sides of the	
Calculate the relative formula mass for the following. Show your working out.		equation. A_r of H = 1	
A_r of C = 12 A_r of H = 1 A_r of O = 16	% mass = $A_r \times$ number of atoms \times 100	$A_r \text{ of } O = 16$ $2H_2 + O_2 \longrightarrow 2H_2O$	
A _r of N = 14 Example:	M _r of the compound Using the equation above, calculate the % mass of sodium	$2 \times (1 \times 2) + (16 \times 2) \longrightarrow 2((1 \times 2) + 16)$	Rea diss and
$ \begin{array}{l} 100_{2} \\ 12 + (16 \times 2) \\ 12 + 32 \\ = 44 \end{array} $	A_r of Na = 23	$36 \longrightarrow 36$	ma
H ₂ 0 (1 × 2) + 16	A _r of Cl = 35.5 % mass = 23 × 1 × 100	left-hand side = right-hand side	ma ma
2 + 16 = 18	<u>23 + 35.5</u> = <u>2300</u>		
CH_4 $12 + (1 \times 4)$ 12 + 4 = 16	58.5 = 39.3% (to 1d.p.)		
$ \begin{array}{c} -10 \\ \text{NH}_4 \text{NO}_3 \\ 14 + (1 \times 4) + 14 + (16 \times 3) \\ 14 + 4 + 14 + 48 \\ = 80 \end{array} $			

Secondary

