AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Foundation

Complete the gap fill: All waves transfer e from one place to another, but the m does not move. The particles oscillate (v) around a fixed point and pass e onto the next particle and in turn they oscillate too.	Which type of wave (at right angles) to t transfer? Which type of wave direction of energy to	You are given the following equation in the exam: period = 1/frequency What are the units for period (time)? frequency? What is the symbol equation linking wave speed, frequency and wavelength? Now complete the rest of the table:			f	A wave has a frequency of 54Hz and a speed of 330m/s. Calculate the wavelength.	
State the two types of wave. 1 2 Which type of wave is represented in this	Which letter on the graph represents d amplitude? wavelength?				aa		
Movement of energy	crest? trough? A	c	Symbol in th Equation V	ne What It Represents	Units		Identifying the suitability of apparatus to measure wave speed, frequency, and wavelength was a required practical
Movement of hand & rope Which type of wave is represented in this				frequency	m		State a control variable in this practical:
picture?	Match up the keyword to the correct definition: The maximum displacement of a point on a wave away from its		Calculate the speed of a wave with a wavelength of 42cm and a frequency of 11Hz.			h	What was the biggest source of error in your
	frequency amplitude	The number of waves passing a point each second.					How could you overcome this error?
	wavelength	The distance from a point on one wave to the equivalent point on the adjacent wave.					

(1)

Which type of wave are electromagnetic (EM) waves - transverse or longitudinal?	Complete the gap fill by choosing from some b of the following words:	Which type of EM wave has the C Th longest wavelength?
	velocity, magnetism, energy, spectrum, acceleration, absorber	highest frequency? inc
	Electromagnetic waves transfer from	shortest wavelength? dep
	the source of the waves to an The waves form a continuous, and all	lowest frequency? cor
Which part of the EM spectrum can human eyes detect?	types, travel at the same through a vacuum (space) or air.	most energy?
Sullease		least energy? ha mi

Complete the boxes to show the order of the electromagnetic (EM) spectrum and state at least two uses of each type of EM wave.

EM Wave:			
Uses:			

The amount of absorption, or radiation, of infrared radiation by different surfaces was a required practical. Briefly outline a method for collecting valid results for

e amount of absorption, or radiation, of rared by different surfaces was a required actical. What was the lependent variable?	(2
lependent variable?	e amount of absorption, or radiation, of rared by different surfaces was a required actical. What was the	d
pendent variable?	lependent variable?	_
htrol variable?	pendent variable?	_
zard, the harm it could cause, and how you nimised the risk? e e this experiment. f	ntrol variable?	_
e	zard, the harm it could cause, and how you nimised the risk?	_
e this experiment.		-
e this experiment. f		
this experiment.		e
this experiment.		
f this experiment.		
this experiment.	·	
	this experiment.	f
		-
		_
		-
		_
]

AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Foundation		3
Next to each EM wave, place a tick or cross to indicate whether it can cause harm to the human body. radio waves microwaves infrared waves	State two factors that affect the amount of harm caused by certain EM waves: 1 2	Suggest why nurses wear lead lined aprons when performing x-ray examinations.
visible light ultraviolet waves x-rays gamma rays	State one advantage of using gamma rays to treat or detect cancer:	
Match up the EM wave to the description of the damage it does to the human body:		
Causes skin to age prematurely and increases the risk of skin cancer. UV waves Causes ionisation inside of cells, this damage leads to the calls dwing	State one disadvantage of using gamma rays to treat or detect cancer:	State two other precautions that nurses and healthcare
gamma rays	State one advantage of using x-rays for medical imaging:	professionals can undertake to reduce the harm of x-rays.
Complete the gap fill: Radiation dose is a measure of the risk of resulting from exposure of the body to the It is measured in sieverts, and 1 sievert (Sv) is equivalent to millisieverts (mSv).	State one disadvantage of using x-rays for medical imaging:	
Some types of radiation are more hazardous than others due to the amount of in the wave and how penetrating it is.		

Complete the gap fill using the following words: speed, 90, faster, medium, angle, ray, refracted

The ______ of a wave depends on the material (_____) it is travelling through. If a wave changes from one medium to another, the ______ changes too.

Waves are only refracted when they meet the boundary between two media at an _____.

The more the _____ changes between the two media, the greater the direction of the wave changes.

However, a wave that meets the boundary at _____° (perpendicular) will not be ______.

Light waves travel ______ in air than in glass. The change in speed, and thus direction, between these two media can be shown using a ______ diagram.

Use a ruler to draw the path of the light ray as it travels through the glass block.

Choose the correct phrase to complete each statement to explain vhat is happening in your ray diagram on the left.

The light ray is travelling from air/glass with a low refractive index, into air/glass with a higher refractive index.

Upon entering the different medium, the average speed of the ray decreases/increases.

The ray is refracted away from/towards the normal.

As the light leaves the glass block and travels into the air, the speed of the ray increases/decreases.

So the ray is refracted away from/towards the normal.

The refractive index of a medium is the extent to which the light is refracted when it enters the medium. Look at the table of data:

d

Medium	Refractive Index
air	1
glass	1.5
water	1.3
diamond	2.4

What conclusions can be drawn from the data?

b

AQA Trilogy Unit 6.6: Waves and Electromagnetic Waves - Foundation Answers

A wave has a frequency of 54Hz and a speed of 330m/s. Calculate the wavelength. Rearrange the equation to make wavelength the subject: $\lambda = v/f$ Substitute the numbers into the equation: 330m/s ÷ 54Hz = 6.12m

Identifying the suitability of apparatus to measure wave speed, frequency, and wavelength was a required practical.

State a control variable in this practical: The volume of water in the tank.

Why was it important to control this variable? The depth of the water will affect the speed and wavelength.

What was the biggest source of error in your practical?

Counting the waves by eye.

How could you overcome this error? **Use a stroboscope.**

Which type of wave are electromagnetic (EM) waves - transverse or longitudinal?	Complete the gap fill by choosing from some of the following words:	Which type of EM wave has the longest wavelength? radio waves	Th inj
	velocity, magnetism, energy, spectrum, acceleration, absorber	highest frequency? gamma rays shortest wavelength? gamma rays	ind
transverse Which part of the EM spectrum can human eyes	Electromagnetic waves transfer energy from the source of the waves to an absorber . The waves form a continuous spectrum , and all types, travel at the same velocitu through a vacuum	lowest frequency? radio waves most energy? gamma rays	de co tei
detect?	(space) or air. The words acceleration and magnetism should not be used.	least energy? radio waves	ha mi Th tu
Visible light only.			

Complete th	Complete the boxes to show the order of the electromagnetic (EM) spectrum and state at least two uses of each type of EM wave.						
EM Wav	e: radio waves	microwaves	infrared waves	visible light	ultraviolet waves	x-rays	gamma rays
Uses:	Television, radio and Bluetooth.	Satellite communication and cooking food.	Remote controls, infrared cameras and heaters.	Optical fibres and photography (cameras).	Security marking, energy efficient lamps and sunbeds.	Medical imaging and medical treatment for cancer.	Medical treatments for cancer and sterilising food.

The amount of absorption, or radiation, of infrared radiation by different surfaces was a required practical. Briefly outline a method for collecting valid results for this experiment.

Cover four boiling tubes in different materials to create different surfaces: matt black, shiny black, white and silver (the independent variable). Pour the same volume of the same start temperature of hot water into the tubes (these control variable ensures validity). Measure the temperature of each tube every minute (the dependent variable). The tube that cools the fastest emits infrared energy the fastest.

e amount of absorption, or radiation, of frared by different surfaces was a required actical. What was the... dependent variable? type of surface pendent variable? **temperature** (°C) ntrol variable? Volume of water or start mperature of the water. izard, the harm it could cause, and how you inimised the risk? he hot water could scald skin, so we used test be racks and ensured the floor was clear of ip hazards.

(2)

Suggest why nurses wear lead lined aprons when performing

Nurses wear lead lined aprons due to two factors: they are exposed to harmful x-rays towards the upper end of the EM spectrum on a regular basis. The x-rays themselves are highly ionising and can cause damage to body cells, resulting in mutations and potentially leading to uncontrolled cell growth (a tumour). Therefore, nurses can reduce their radiation dose by wearing a lead lined apron which blocks the rays.

State two other precautions that nurses and healthcare professionals can undertake to reduce the harm of x-rays.

1. Work from a distance/step into another room/stand behind a

2. Wear a radiation badge/dosimeter to measure and record

Choose the correct phrase to complete each statement to explain 🗠 Complete the gap fill using the following words: speed, 90, faster, medium, angle, ray, refracted what is happening in your ray diagram on the left. The **speed** of a wave depends on the material (**medium**) it is The light ray is travelling from **air**/glass with a low refractive travelling through. If a wave changes from one medium to index, into air/glass with a higher refractive index. another, the **speed** changes too. Upon entering the different medium, the average speed of the ray Waves are only refracted when they meet the boundary between decreases/increases. two media at an **angle**. The ray is refracted **away from**/towards the normal. The more the **speed** changes between the two media, the greater the direction of the wave changes. As the light leaves the glass block and travels into the air, the speed of the ray increases/decreases. However, a wave that meets the boundary at **90°** (perpendicular) will not be **refracted**. So the ray is refracted away from/towards the normal. Light waves travel **faster** in air than in glass. The change in The refractive index of a medium is the extent to which the speed, and thus direction, between these two media can be shown using a **ray** diagram.

\b

Use a ruler to draw the path of the light ray as it travels through the glass block.

light is refracted when it enters the medium. Look at the table of data:

Medium	Refractive Index
air	1
glass	1.5
water	1.3
diamond	2.4

What conclusions can be drawn from the data?

Air has the lowest refractive index, a value of 1, and diamond has the highest refractive index of 2.4.

Air is a gas and has the lowest refractive index. The refractive index increases in liquids (water), and increases further in solids (glass and diamond).

