Indices

1. Rules of Indices

$$a^{0} = 1$$

$$a^{-p} = \frac{1}{a^{p}}$$

$$a^{p} \times a^{q} = a^{p+q}$$

$$a^{p} \div a^{q} = a^{p-q}$$

$$\left(a^{p}\right)^{q} = a^{pq}$$

$$a^{\frac{1}{n}} = \sqrt[n]{a} \quad (n \neq 0)$$

(a) Write down the value of $49^{\frac{1}{2}}$.

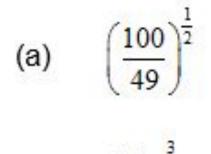
(b) Write down the value of 32° .

(c) Write down the value of $8^{-\frac{2}{3}}$.

(a) Write down the value of $49\overline{2}$.

Power $\frac{1}{2}$ means square root. So the answer is 7

(b) Write down the value of 32° . Anything

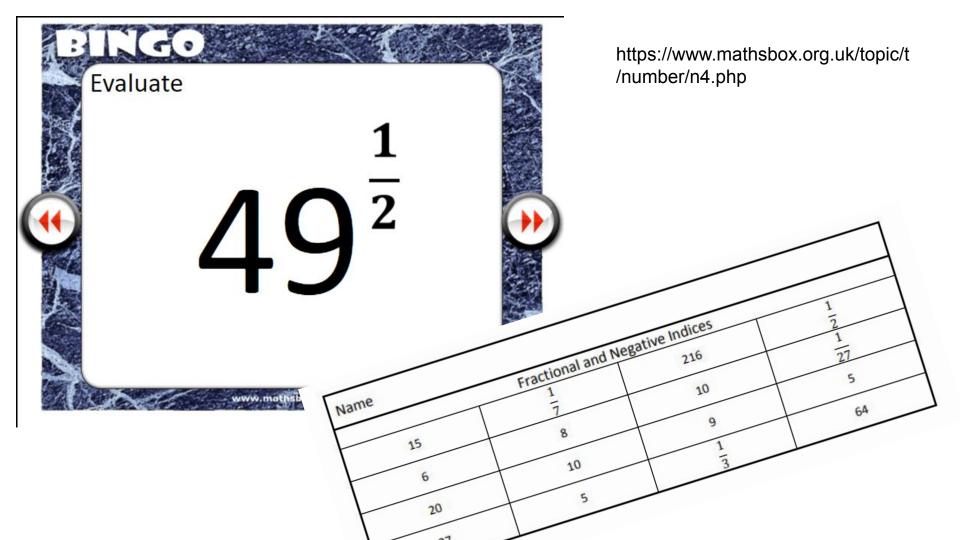

Anything to the power zero is 1

(c) Write down the value of 8^{-3} .

Power $\frac{2}{3}$ means cube root and then square this. So cube root of 8 is 2, and 2^2 is 4. Negative power means 1 over So the answer is 1/4

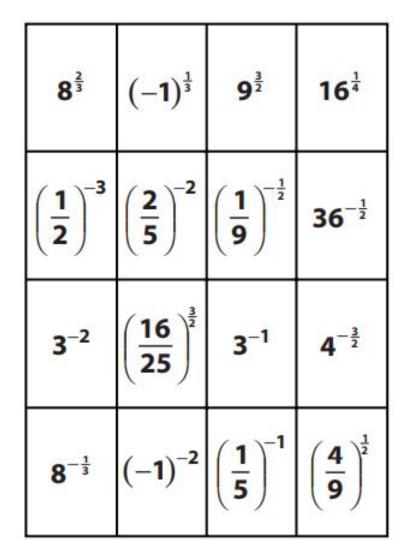
Without using a calculator, work out the following:

(b) $\left(\frac{9}{4}\right)^{-\frac{3}{2}}$

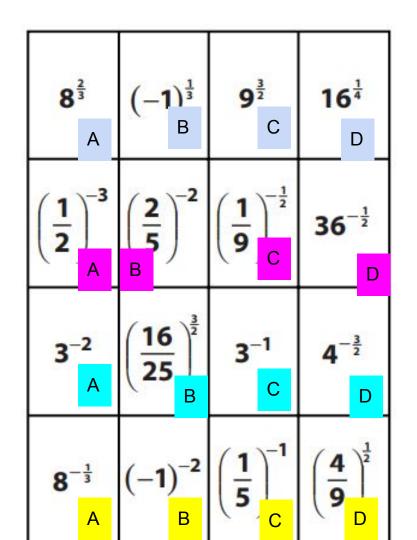

(a)

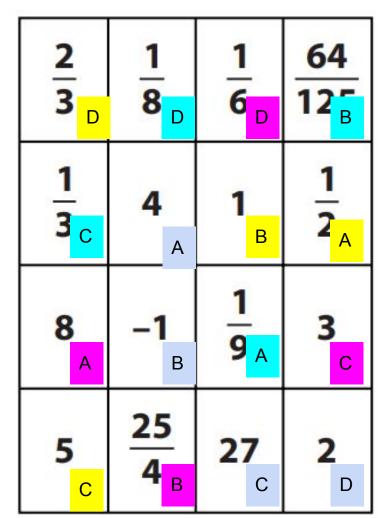
(b)

Without using a calculator, work out the following:


Just square root the numerator and denominator to get 10/7. Note that this method does not work if there are mixed numbers.

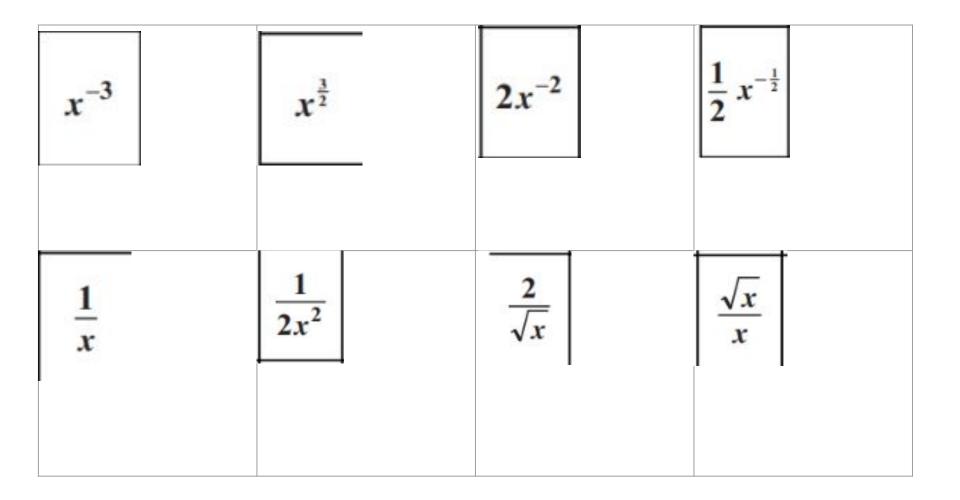
Square root to get 3/2. Then cube the answer to get 27/8. Then reciprocal (because of the negative) to get 8/27 2. Bingo




We've had to miss this out for our remote learning task!

3. Match them up!

2 3	<u>1</u> 8	<u>1</u> 6	64 125
1 3	4	1	1 2
8	-1	<u>1</u> 9	3
5	<u>25</u> 4	27	2


Write the following in index form (as a power)

(a) ∜x

(b) $\frac{2}{x}$

(c) $\frac{1}{2x}$

(d) $\frac{5}{2\sqrt{x}}$

	First	t column			Second	column	
1	\sqrt{x}	11	$\frac{1}{x^2} \times \frac{1}{x^3}$	Α	x [‡]	К	$x^{\frac{1}{1}}$
2	$\frac{1}{x}$	12	$\left(\sqrt[3]{x}\right)^2$	В	$\frac{1}{2}x^{-3}$	L	x ²
3	$\frac{1}{\sqrt{x}}$	13	$\sqrt{x^7}$	С	$\frac{1}{2}x^{-1}$	М	x ⁻²
4	\sqrt{x} $\sqrt[3]{x}$	14	$\sqrt{\left(\frac{1}{x^{s}}\right)}$	D	x ⁴	N	x ⁴
5	$\frac{1}{x^2}$	15	$\frac{1}{\sqrt{x^{-8}}}$	E	x ⁻¹	0	$2x^{-1}$
6	$\frac{1}{2x^3}$	16	$x \times \sqrt{x \times x^6}$	F	$\frac{1}{2}x$	Ρ	$x^{\frac{1}{2}}$
7	$\frac{\frac{1}{2x^3}}{\frac{2}{x^3}}$	17	$\sqrt{\left(\frac{4}{x^2}\right)}$	G	<i>x</i> ⁴	Q	x ⁻⁵
8	x√x	18	$\sqrt{\left(\frac{1}{4x^2}\right)}$	н	x ²	R	x [‡]
9	$\frac{\sqrt{x}}{x^2}$	19	$\sqrt{\left(\frac{x^2}{4}\right)}$	1	2 <i>x</i>	S	2x ⁻³
10	$\frac{1}{x^{-2}}$	20	$\sqrt{4x^2}$	J	$x^{\frac{1}{2}}$	т	x ²

Solutions

4. Simplify Expressions

a	$2p^2 \times 4p^5$	b $x^2 \times x^3 \times x^5$	c $12n^7 \div 2n^2$	d $(y^3)^4$
e	$(2b)^3 \div 4b^2$	f $p^3q \times pq^2$	g $x^4y^3 \div xy^2$	h $2r^2s \times 3s^2$
i	$6x^5y^8 \div 3x^2y$	j $6a^4b^5 \times \frac{2}{3}ab^3$	k $(5rs^2)^3 \div (10rs)^2$	$1 3p^4q^3 \div \frac{1}{5}pq^4$

2

Simplify			A
a $2p^2 \times 4p^5$	b $x^2 \times x^3 \times x^5$	c $12n^7 \div 2n^2$	d $(y^3)^4$
e $(2b)^3 \div 4b^2$	f $p^3q \times pq^2$	g $x^4y^3 \div xy^2$	h $2r^2s \times 3s^2$
$\mathbf{i} 6x^5y^8 \div 3x^2y$	j $6a^4b^5 \times \frac{2}{3}ab^3$	k $(5rs^2)^3 \div (10rs)^2$	$1 3p^4q^3 \div \frac{1}{5}pq^2$
a = $8p^7$	b = x^{10}	$c = 6n^5$	d = y^{12}
e = 2b	$f - p^4 q^3$	$\mathbf{g} - x^3 y$	$\mathbf{h} = 6r^2s^3$
$\mathbf{i} = 2x^3y^7$	$\mathbf{j} = 4a^5b^8$	$\mathbf{k} = 125r^3s^6 \div 1$ $= \frac{5}{4}rs^4$	$100r^2s^2 \mathbf{l} = 15p^3q$

a
$$x^8 \times x^{-6}$$
b $y^{-2} \times y^{-4}$ c $6p^3 \div 2p^7$ d $(2x^{-4})^3$ e $y^3 \times y^{-\frac{1}{2}}$ f $2b^{\frac{2}{3}} \times 4b^{\frac{1}{4}}$ g $x^{\frac{3}{5}} \div x^{\frac{1}{3}}$ h $a^{\frac{1}{2}} \div a^{\frac{4}{3}}$ i $p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$ j $(3x^{\frac{2}{5}})^2$ k $y \times y^{\frac{5}{6}} \times y^{-\frac{3}{2}}$ l $4t^{\frac{3}{2}} \div 12t^{\frac{1}{2}}$ m $\frac{b^2 \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$ n $\frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$ o $\frac{4x^{\frac{2}{3}} \times 3x^{-\frac{1}{6}}}{6x^{\frac{3}{4}}}$ p $\frac{2a \times a^{\frac{3}{4}}}{8a^{-\frac{1}{2}}}$

a
$$x^8 \times x^{-6}$$

b $y^{-2} \times y^{-4}$
c $6p^3 \div 2p^7$
d $(2x^{-4})^3$
e $y^3 \times y^{-\frac{1}{2}}$
f $2b^{\frac{2}{3}} \times 4b^{\frac{1}{4}}$
g $x^{\frac{3}{5}} \div x^{\frac{1}{3}}$
h $a^{\frac{1}{2}} \div a^{\frac{4}{3}}$
i $p^{\frac{1}{4}} \div p^{-\frac{1}{5}}$
j $(3x^{\frac{2}{5}})^2$
k $y \times y^{\frac{5}{6}} \times y^{-\frac{3}{2}}$
l $4t^{\frac{3}{2}} \div 12t^{\frac{1}{2}}$
m $\frac{b^2 \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$
n $\frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$
o $\frac{4x^{\frac{2}{3}} \times 3x^{-\frac{1}{6}}}{6x^{\frac{3}{4}}}$
p $\frac{2a \times a^{\frac{3}{4}}}{8a^{-\frac{1}{2}}}$

a
$$= x^{2}$$

b $= y^{-6}$
c $= 3p^{-4}$
e $= y^{\frac{5}{2}}$
f $= 8b^{\frac{2}{3} + \frac{1}{4}} = 8b^{\frac{11}{12}}$
g $= x^{\frac{3}{5} - \frac{1}{3}} = x^{\frac{4}{15}}$
i $= p^{\frac{1}{4} - (-\frac{1}{5})} = p^{\frac{9}{20}}$
j $= 9x^{\frac{4}{5}}$
k $= y^{1 + \frac{5}{6} - \frac{3}{2}} = y^{\frac{1}{3}}$
m $= b^{2 + \frac{1}{4} - \frac{1}{2}} = b^{\frac{7}{4}}$
n $= y^{\frac{1}{2} + \frac{1}{3} - 1} = y^{-\frac{1}{6}}$
o $= 2x^{\frac{2}{3} + (-\frac{1}{6}) - \frac{3}{4}} = 2x^{-\frac{1}{4}}$

Expand and simplify

- **a** $x(x^2 x^{-1})$ **b** $2x^3(x^{-1} + 3)$ **c** $x^{-1}(3x - x^3)$ **e** $\frac{1}{2}x^2(6x + 4x^{-1})$ **f** $3x^{\frac{1}{2}}(x^{-\frac{1}{2}} - x^{\frac{3}{2}})$ **g** $x^{-\frac{3}{2}}(5x^2 + x^{\frac{7}{2}})$
- i $(x^2+1)(x^4-3)$ j $(2x^5+x)(x^4+3)$ k $(x^2-2x^{-1})(x-x^{-2})$

Expand and simplify

- **a** $x(x^2 x^{-1})$ **b** $2x^3(x^{-1} + 3)$ **c** $x^{-1}(3x x^3)$
- **e** $\frac{1}{2}x^2(6x+4x^{-1})$ **f** $3x^{\frac{1}{2}}(x^{-\frac{1}{2}}-x^{\frac{3}{2}})$ **g** $x^{-\frac{3}{2}}(5x^2+x^{\frac{7}{2}})$
- i $(x^2+1)(x^4-3)$ j $(2x^5+x)(x^4+3)$ k $(x^2-2x^{-1})(x-x^{-2})$

- **a** $= x^3 1$ **b** $= 2x^2 + 6x^3$ **c** $= 3 x^2$
- e = $3x^3 + 2x$ f = $3 3x^2$ g = $5x^{\frac{1}{2}} + x^2$
- i = $x^6 + x^4 3x^2 3$ j = $2x^9 + 6x^5 + x^5 + 3x$ k = $x^3 1 2 + 2x^{-3}$ = $2x^9 + 7x^5 + 3x$ = $x^3 - 3 + 2x^{-3}$

С

a $\frac{x^3 + 2x}{2}$

x

 $\frac{p+p^{\frac{3}{2}}}{p^{\frac{3}{4}}}$

e

 $\frac{4t^5-6t^3}{2t^2}$ b $\frac{8w - 2w^{\frac{1}{2}}}{4w^{-\frac{1}{2}}}$ f

D

Simplify
a
$$\frac{x^3 + 2x}{x}$$
 b $\frac{4t^5 - 6t^3}{2t^2}$
e $\frac{p + p^{\frac{3}{2}}}{p^{\frac{3}{4}}}$ **f** $\frac{8w - 2w^{\frac{1}{2}}}{4w^{-\frac{1}{2}}}$

a
$$= x^{2} + 2$$

b $= 2t^{3} - 3t$
e $= p^{\frac{1}{4}} + p^{\frac{3}{4}}$
f $= 2w^{\frac{3}{2}} - \frac{1}{2}w$

D

5. Solving Equations

Find the value of x such that

a
$$2^x = 64$$
b $5^{x-1} = 125$ c $3^{x+4} - 27 = 0$ d $8^x - 2 = 0$ e $3^{2x-1} = 9$ f $16 - 4^{3x-2} = 0$ g $9^{x-2} = 27$ h $8^{2x+1} = 16$

Find the value of *x* such that

 $x = \frac{3}{2}$

a
$$2^{x} = 64$$

b $5^{x-1} = 125$
c $3^{x+4} - 27 = 0$
d $8^{x} - 2 = 0$
e $3^{2x-1} = 9$
f $16 - 4^{3x-2} = 0$
g $9^{x-2} = 27$
h $8^{2x+1} = 16$

a
$$2^{x} = 2^{6}$$

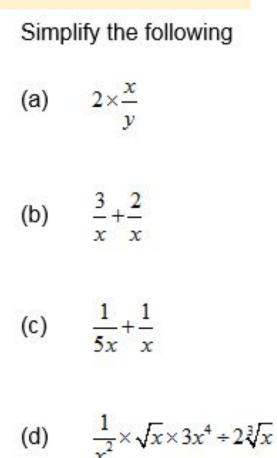
 $x = 6$
b $5^{x-1} = 5^{3}$
 $x = 4$
c $3^{x+4} = 27 = 3^{3}$
 $x + 4 = 3$
 $x = -1$
d $(2^{3})^{x} = 2^{3x} = 2$
 $3x = 1$
 $x = \frac{1}{3}$
e $3^{2x-1} = 3^{2}$
 $2x - 1 = 2$
f $16 = 4^{2} = 4^{3x-2}$
 $2 = 3x - 2$
g $(3^{2})^{x-2} = 3^{2x-4} = 3^{3}$ **h** $(2^{3})^{2x+1} = 2^{6x+3} = 2^{4}$
 $2x - 4 = 3$
h $(2^{3})^{2x+1} = 2^{6x+3} = 2^{4}$

 $x = \frac{4}{3}$

 $x = \frac{7}{2}$

 $x = \frac{1}{6}$

Solve each equation.

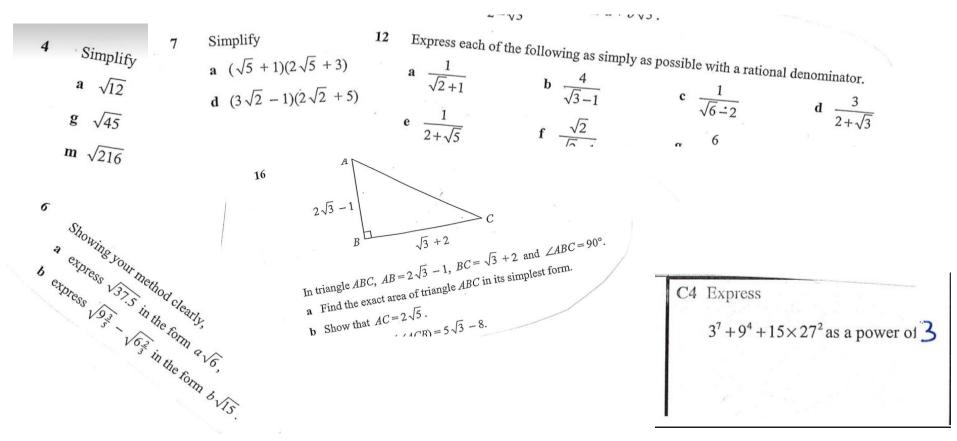

a
$$2^{x+3} = 4^x$$
b $5^{3x} = 25^{x+1}$ c $9^{2x} = 3^{x-3}$ d $16^x = 4^{1-x}$ e $4^{x+2} = 8^x$ f $27^{2x} = 9^{3-x}$ g $6^{3x-1} = 36^{x+2}$ h $8^x = 16^{2x-1}$

Solve each equation.

a
$$2^{x+3} = 4^x$$
b $5^{3x} = 25^{x+1}$ c $9^{2x} = 3^{x-3}$ d $16^x = 4^{1-x}$ e $4^{x+2} = 8^x$ f $27^{2x} = 9^{3-x}$ g $6^{3x-1} = 36^{x+2}$ h $8^x = 16^{2x-1}$

6. Challenges!

Challenge 1


Challenge 2

Simplify the following: (a) $\frac{x^2 \times (x^3)^5}{x^9}$

(b) $\frac{\sqrt[3]{z}x^2y}{z^2\sqrt{x}} \div \frac{x^0z^3}{(y^2)^3}$

7. Task for September See 'Homework Questions for September' word/pdf document

4m, 7a, 12d, 6a, 16a, c4

