Getting ready for A Level Maths

Congratulations on choosing A Level Maths...what an excellent choice!

The purpose of this induction task is to keep your mathematical knowledge ticking over, in particular those GCSE skills that will be most useful for A Level.

We would also hate you to be bored during that extra long summer holiday you have!

Task:

Complete each topic task and mark your answers. If you are unsure about any topics, make sure you do a bit of revision using revision guides and/or the internet to help.

Complete the "Are You Ready?" assessment on paper and bring it to your first Maths lesson, along with the completed booklet.

Topic Checklist:

- Surds and Indices
- Expanding and factorising quadratics
- Completing the square
- Quadratic formula
- Simultaneous equations

1 Evaluate

	a √49	b $\sqrt{121}$ c $\sqrt{\frac{1}{9}}$	d $\sqrt{\frac{4}{25}}$	e $\sqrt{0.01}$	f √0.09
	g ∛8	h ∛1000 i ∜81	j $\sqrt{1\frac{9}{16}}$	k ∛0.125	$1 \sqrt[3]{15\frac{5}{8}}$
2	Simplify				
	a $\sqrt{7} \times \sqrt{7}$	b $4\sqrt{5} \times \sqrt{5}$	c $(3\sqrt{3})^2$	d	$(\sqrt{6})^4$
	e $(\sqrt{2})^5$	f $(2\sqrt{3})^3$	g $\sqrt{2} \times \sqrt{8}$	h	$2\sqrt{3} \times \sqrt{27}$
	i $\frac{\sqrt{32}}{\sqrt{2}}$	$j \frac{\sqrt{3}}{\sqrt{12}}$	k $(\sqrt[3]{6})^3$	1	(3 ³ √2) ³
3	Express in the	e form $k\sqrt{2}$			
	a $\sqrt{18}$	b √50 c √8	d √98	e $\sqrt{200}$	f √162

8 Express each of the following as simply as possible with a rational denominator.

a
$$\frac{1}{\sqrt{5}}$$
 b $\frac{2}{\sqrt{3}}$ **c** $\frac{1}{\sqrt{8}}$ **d** $\frac{14}{\sqrt{7}}$ **e** $\frac{3\sqrt{2}}{\sqrt{3}}$ **f** $\frac{\sqrt{5}}{\sqrt{15}}$

12 Express each of the following as simply as possible with a rational denominator.

a
$$\frac{1}{\sqrt{2}+1}$$
 b $\frac{4}{\sqrt{3}-1}$ **c** $\frac{1}{\sqrt{6}-2}$ **d** $\frac{3}{2+\sqrt{3}}$

indices

1	Evaluate			
	a 8 ² b	6^3 c 7^0	d (-5) ⁴ e (-3)	$\int_{0}^{5} f \left(\frac{1}{2}\right)^{4}$
	g $(\frac{2}{3})^3$ h	$(-\frac{1}{4})^3$ i $(1\frac{1}{3})^2$	j $(1\frac{1}{2})^4$ k (0.1	5 I $(-0.2)^{3}$
2	Write in the form 2'	n		
	a $2^5 \times 2^3$ b 2	2×2^{6} c 1	d $2^6 \div 2^2$ e 2^{15}	$\div 2^6$ f $(2^7)^2$
3	Simplify			
	a $2p^2 \times 4p^5$	b $x^2 \times x^3 \times x^5$	c $12n^7 \div 2n^2$	$d (y^3)^4$
	e $(2b)^3 \div 4b^2$	f $p^3q \times pq^2$	g $x^4y^3 \div xy^2$	h $2r^2s \times 3s^2$
	$\mathbf{i} 6x^5y^8 \div 3x^2y$	$\mathbf{j} 6a^4b^5 \times \frac{2}{3}ab^3$	k $(5rs^2)^3 \div (10rs)^2$	$1 3p^4q^3 \div \frac{1}{5}pq^2$
7	Simplify			
	a $x^8 \times x^{-6}$	b $y^{-2} \times y^{-4}$	c $6p^3 \div 2p^7$	d $(2x^{-4})^3$
	$e y^3 \times y^{-\frac{1}{2}}$	$\mathbf{f} 2b^{\frac{2}{3}} \times 4b^{\frac{1}{4}}$	$\mathbf{g} x^{\frac{1}{5}} \div x^{\frac{1}{3}}$	h $a^{\frac{1}{2}} \div a^{\frac{4}{3}}$
	i $p^{\frac{1}{4}} \div p^{-\frac{1}{2}}$	j $(3x^{\frac{2}{3}})^2$	$\mathbf{k} \ y \times y^{\frac{5}{6}} \times y^{-\frac{3}{2}}$	1 $4t^{\frac{3}{2}} \div 12t^{\frac{1}{2}}$
	$\mathbf{m} \frac{b^2 \times b^{\frac{1}{4}}}{b^{\frac{1}{2}}}$	$\mathbf{n} \frac{y^{\frac{1}{2}} \times y^{\frac{1}{3}}}{y}$	$0 \frac{4x^{\frac{2}{3}} \times 3x^{-\frac{1}{6}}}{6x^{\frac{2}{4}}}$	$p = \frac{2a \times a^{\frac{3}{4}}}{2a^{-\frac{1}{2}}}$
	0-	2	0.1	80 -

1 Factorise a $x^2 + 4x + 3$ b $x^2 + 7x + 10$ c $y^2 - 3y + 2$ d $x^2 - 6x + 9$ e $y^2 - y - 2$ f $a^2 + 2a - 8$ g $x^2 - 1$ h $p^2 + 9p + 14$ 2 Factorise a $2x^2 + 3x + 1$ b $2 + 7p + 3p^2$ c $2y^2 - 5y + 3$ d $2 - m - m^2$ e $3r^2 - 2r - 1$ f $5 - 19y - 4y^2$ g $4 - 13a + 3a^2$ h $5x^2 - 8x - 4$

5 Sketch each curve showing the coordinates of any points of intersection with the coordinate axes.

$\mathbf{a} y = x^2 - 3x + 2$	b $y = x^2 + 5x + 6$	c $y = x^2 - 9$
$\mathbf{d} y = x^2 - 2x$	e $y = x^2 - 10x + 25$	f $y = 2x^2 - 14x + 20$

SOLVING QUADRATICS

3 Using factorisation, solve each equation.

a	$x^2 - 4x + 3 = 0$	b $x^2 + 6x + 8 = 0$	c $x^2 + 4x - 5 = 0$	d $x^2 - 7x = 8$
e	$x^2 - 25 = 0$	f $x(x-1) = 42$	$g x^2 = 3x$	h $27 + 12x + x^2 = 0$

- 3 Solve each equation by completing the square, giving your answers as simply as possible in terms of surds where appropriate.
 - **b** $p^2 + 2p 2 = 0$ **f** $a^2 - 12a - 18 = 0$ **j** $2y^2 - 4y + 1 = 0$
 - **n** $4x^2 + 49 = 28x$
- 5 Sketch each curve showing the exact coordinates of its turning point and the point where it crosses the *y*-axis.

a $y = x^2 - 4x + 3$ **b** $y = x^2 + 2x - 24$ **c** $y = x^2 - 2x + 5$

2 Use the quadratic formula to solve each equation, giving your answers as simply as possible in terms of surds where appropriate.

a	$x^2 + 4x + 1 = 0$	b	$4 + 8t - t^2 = 0$	C	$y^2 - 20y + 91 = 0$	d	$r^2 + 2r - 7 = 0$
e	$6 + 18a + a^2 = 0$	f	m(m-5)=5	2	$x^2 + 11x + 27 = 0$	h	$2u^2 + 6u + 3 = 0$

SIMULTANEOUS EQUATIONS

- 1 Solve each pair of simultaneous equations.
 - a y = 3x
y = 2x + 1b y = x 6
 $y = \frac{1}{2}x 4$ c y = 2x + 6
y = 3 4xd x + y 3 = 0
x + 2y + 1 = 0e x + 2y + 11 = 0
2x 3y + 1 = 0f 3x + 3y + 4 = 0
5x 2y 5 = 0

2 Find the coordinates of the points of intersection of the given straight line and curve in each case.

a
$$y = x + 2$$

 $y = x^2 - 4$
b $y = 4x + 11$
c $y = 2x - 1$
 $y = x^2 + 3x - 1$
c $y = 2x^2 + 3x - 7$

ARE YOU READY?

Complete on paper and hand in to your Maths teacher in your first lesson.

You will find some this challenging – don't worry!

Try your best and give each question a go – we just want to see what you can do.

 $(3\sqrt{2} - 3) \operatorname{cm}$

The diagram shows a rectangle measuring $(3\sqrt{2} - 3)$ cm by *l* cm. Given that the area of the rectangle is 6 cm², find the exact value of *l* in its simplest form.

2. Given that
$$x = 2^{t-1}$$
 and $y = 2^{3t}$,
a find expressions in terms of t for
i xy ii $2y^2$

3. Solve $x - 5 + \frac{4}{x} = 0$

4.

1.

The diagram shows the curve with equation $y = 2x^2 - 8x + 3$. Find and simplify the exact coordinates of the points where the curve crosses the *x*-axis.

5. **a** Express $x^2 - 4\sqrt{2}x + 5$ in the form $a(x+b)^2 + c$.

b Write down an equation of the line of symmetry of the curve $y = x^2 + 4\sqrt{2}x + 5$.

6. The line y = 5 - x intersects the curve $y = x^2 - 3x + 2$ at the points *P* and *Q*. Find the length *PQ* in the form $k\sqrt{2}$.

1	a = 7	b = 11		$c = \frac{1}{3}$
	$d = \frac{2}{5}$	e = 0.1		f = 0.3
	g = 2	h = 10		i = 3
	$\mathbf{j} = \sqrt{\frac{25}{16}} = \frac{5}{4} \text{ or } 1\frac{1}{4}$	$\mathbf{k} = \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$	or 0.5	$1 = \sqrt[3]{\frac{125}{8}} = \frac{5}{2} \text{ or } 2\frac{1}{2}$
2	a = 7	b = 20	c = 27	d = 36
	$e = 4\sqrt{2}$	f = $24\sqrt{3}$	$g = \sqrt{16} = 4$	h = $2\sqrt{81}$ = 18
	$\mathbf{i} = \sqrt{16} = 4$	$\mathbf{j} = \sqrt{\frac{1}{4}} = \frac{1}{2}$	k = 6	I = 54
3	$\mathbf{a} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$	$\mathbf{b} = \sqrt{25} \times \sqrt{25}$	$\overline{2} = 5\sqrt{2}$	$\mathbf{c} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$
	$\mathbf{d} = \sqrt{49} \times \sqrt{2} = 7\sqrt{2}$	$\mathbf{e} = \sqrt{100} \times \sqrt{100}$	$\sqrt{2} = 10\sqrt{2}$	$\mathbf{f} = \sqrt{81} \times \sqrt{2} = 9\sqrt{2}$
8	a = $\frac{1}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{1}{5}\sqrt{5}$	$\mathbf{b} = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} =$	$=\frac{2}{3}\sqrt{3}$	$e = \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{4}\sqrt{2}$
	$\mathbf{d} = \frac{14}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = 2\sqrt{7}$	$\mathbf{e} = \frac{3\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	= $\sqrt{6}$	$\mathbf{f} = \frac{\sqrt{5}}{\sqrt{3}\sqrt{5}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{1}{3}\sqrt{3}$
12	a = $\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}}{2}$	$\frac{-1}{-1} = \sqrt{2} - 1$		
	$\mathbf{b} = \frac{4}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{4(\sqrt{3})}{3}$	$\frac{\overline{3}+1}{-1} = 2(\sqrt{3}+1)$		
	$\mathbf{c} = \frac{1}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2} = \frac{\sqrt{6}}{6}$	$\frac{1}{-4} = \frac{1}{2}(\sqrt{6}+2) \text{ or } \frac{1}{2}\sqrt{4}$	6 + 1	

 $\mathbf{d} = \frac{3}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{3(2-\sqrt{3})}{4-3} = 3(2-\sqrt{3})$

ANSWERS: indices

1	a	= 64		b = 216		c =	1
	d	= 625		e = -243		f =	<u>1</u> 16
	g	$=\frac{8}{27}$		$\mathbf{h} = -\frac{1}{64}$		i =	$\left(\frac{4}{3}\right)^2 = \frac{16}{9}$ or $1\frac{7}{9}$
	j	$= \left(\frac{3}{2}\right)^4 = \frac{81}{16}$	or $5\frac{1}{16}$	k = 0.000 0	1	1 =	-0.008
2	a	2 ⁸	b 2 ⁷	c 2 ⁰	d 2 ⁴	e 2 ⁹	f 2 ¹⁴
3	a	$= 8p^{7}$	$\mathbf{b} = x$	10	$c = 6n^5$		d = y^{12}
	e	= 2b	$\mathbf{f} = p$	${}^{4}q^{3}$	$\mathbf{g} = x^3 y$		$\mathbf{h} = 6r^2s^3$
	i	$=2x^3y^7$	j = 4	a ⁵ b ⁸	$\mathbf{k} = 125r^3s^6 + \frac{5}{4}rs^4$	+ 1007 ² 5	$s^2 \mathbf{l} = 15p^3q$
7	a	$=x^2$	$\mathbf{b} = y^{-6}$		$c = 3p^{-4}$		d = $8x^{-12}$
	e	$= y^{\frac{5}{2}}$	f = 8 <i>b</i>	$\frac{2}{3} + \frac{1}{4} = 8b^{\frac{11}{12}}$	$\mathbf{g} = x^{\frac{3}{5} - \frac{1}{5}} = x^{\frac{4}{15}}$		h = $a^{\frac{1}{2} - \frac{4}{3}} = a^{-\frac{5}{6}}$
	i	$=p^{\frac{1}{4}-(-\frac{1}{3})}=p^{\frac{1}{4}-(-\frac{1}{3})}=p^{\frac{1}{4}-(-\frac{1}{3})}=p^{\frac{1}{4}-(-\frac{1}{3})}$	$p^{\frac{9}{20}}$ j = 9x	4-3	$\mathbf{k} = y^{1 + \frac{5}{6} - \frac{3}{2}} = y$, 1	$\mathbf{l} = \frac{1}{3}t$
	m	$=b^{2+\frac{1}{4}-\frac{1}{2}}=l$	$b^{\frac{2}{4}}$ n = $y^{\frac{1}{2}}$	$x^{+\frac{1}{3}-1} = y^{-\frac{1}{6}}$	$\mathbf{o} = 2x^{\frac{2}{3} + (-\frac{1}{6}) - \frac{3}{4}}$	$=2x^{-\frac{1}{4}}$	$\mathbf{p} = \frac{1}{4}a^{1+\frac{3}{4}-(-\frac{1}{2})} = \frac{1}{4}a^{\frac{9}{4}}$

ANSWERS: QUADRATICs

1	a $(x+1)(x+3)$	b $(x+2)(x+5)$	c $(y-1)(y-2)$	d $(x-3)^2$
	e $(y+1)(y-2)$	f (<i>a</i> + 4)(<i>a</i> − 2)	g $(x+1)(x-1)$	h (<i>p</i> +2)(<i>p</i> +7)
2	a $(2x+1)(x+1)$	b $(3p+1)(p+2)$	c $(2y-3)(y-1)$	d $(2+m)(1-m)$
	e $(3r+1)(r-1)$	f $(5+y)(1-4y)$	g $(3a-1)(a-4)$	h $(5x+2)(x-2)$

5 **a** $x^2 - 3x + 2 = 0$ (x - 1)(x - 2) = 0x = 1 or 2

y 🛦

(0, 2)

(0, 6)

(-2,0) O x

d $x^2 - 2x = 0$ x(x - 2) = 0x = 0 or 2

0 (1,0)

(2,0)

x

(-3, 0)

ANSWERS: SOLVING QUADRATICS

3 **a**
$$(x-1)(x-3) = 0$$
 b $(x+4)(x+2) = 0$ **c** $(x+5)(x-1) = 0$ **d** $x^2 - 7x - 8 = 0$
 $x = 1 \text{ or } 3$ $x = -4 \text{ or } -2$ $x = -5 \text{ or } 1$ $(x+1)(x-8) = 0$
e $(x+5)(x-5) = 0$ **f** $x^2 - x - 42 = 0$ **g** $x^2 - 3x = 0$ **h** $(x+9)(x+3) = 0$
 $x = -5 \text{ or } 5$ $(x+6)(x-7) = 0$ $x(x-3) = 0$ $x = -9 \text{ or } -3$
 $x = -6 \text{ or } 7$ $x = 0 \text{ or } 3$

b
$$(p+1)^2 - 1 - 2 = 0$$

 $(p+1)^2 = 3$
 $p+1 = \pm \sqrt{3}$
 $p = -1 \pm \sqrt{3}$
f $(a-6)^2 - 36 - 18 = 0$
 $(a-6)^2 = 54$
 $a-6 = \pm \sqrt{54} = \pm 3\sqrt{6}$
 $a = 6 \pm 3\sqrt{6}$
j $y^2 - 2y + \frac{1}{2} = 0$
 $(y-1)^2 - 1 + \frac{1}{2} = 0$
 $(y-1)^2 = \frac{1}{2}$
 $y - 1 = \pm \frac{1}{\sqrt{2}} = \pm \frac{1}{2}\sqrt{2}$
n $4x^2 - 28x + 49 = 0$
 $x^2 - 7x + \frac{49}{4} = 0$
 $(x - \frac{7}{2})^2 - \frac{49}{4} + \frac{49}{4} = 0$
 $(x - \frac{7}{2})^2 = 0$
 $x = \frac{7}{2}$

5 **a** $y = (x-2)^2 - 4 + 3$ $y = (x-2)^2 - 1$ minimum (2, -1) **b** $y = (x+1)^2 - 1 - 24$ $y = (x+1)^2 - 25$ minimum (-1, -25) **c** $y = (x-1)^2 - 1 + 5$ $y = (x-1)^2 + 4$ minimum (1, 4) **c** $y = (x-1)^2 + 4$ minimum (1, 4) **c** $y = (x-1)^2 + 4$ minimum (1, 4) **c** $y = (x-1)^2 + 4$ minimum (1, 4) **c** $y = \frac{(0, 5)}{(0, -24)}$ **c** $y = \frac{20 \pm \sqrt{400 - 364}}{2}$ **d** $r = \frac{-2 \pm \sqrt{4 + 28}}{2}$ $x = \frac{-4 \pm 2\sqrt{3}}{2}$ $x = -2 \pm \sqrt{3}$ **b** $t = \frac{-8 \pm \sqrt{64 + 16}}{-2}$ $r = \frac{-2 \pm \sqrt{4} + 28}{2}$ $r = \frac{-2 \pm 4\sqrt{2}}{2}$ $r = -1 \pm 2\sqrt{2}$ **e** $a = \frac{-18 \pm \sqrt{324 - 24}}{2}$ **f** $m^2 - 5m - 5 = 0$ $m = \frac{5 \pm \sqrt{25 + 20}}{2}$ $r = \frac{1(1 \pm \sqrt{121 - 108}}{2}$ **h** $u = \frac{-6 \pm \sqrt{36 - 24}}{4}$

$$a = \frac{1}{2} \qquad m = \frac{1}{2} \qquad x = \frac{1}{2} (-11 \pm \sqrt{13}) \qquad u = \frac{1}{4} \qquad u = \frac{1}{2} (-3 \pm \sqrt{3}) \qquad u = \frac{1}{2} (-3 \pm \sqrt{3})$$

ANSWERS: SIMULTANEOUS EQUATIONS

1	a $3x = 2x + 1$	b $x - 6 = \frac{1}{2}x - 4$	c $2x + 6 = 3 - 4x$
	x = 1	<i>x</i> = 4	$x = -\frac{1}{2}$
	$\therefore x = 1, y = 3$	$\therefore x = 4, y = -2$	$\therefore x = -\frac{1}{2}, y = 5$
	d subtracting y+4=0 y=-4 $\therefore x=7, y=-4$	e $2x + 4y + 22 = 0$ 2x - 3y + 1 = 0 subtracting 7y + 21 = 0 y = -3 ∴ $x = -5, y = -3$	f $6x + 6y + 8 = 0$ 15x - 6y - 15 = 0 adding 21x - 7 = 0 $x = \frac{1}{3}$ $\therefore x = \frac{1}{3}, y = -\frac{5}{3}$
2	a $x + 2 = x^2 - 4$ $x^2 - x - 6 = 0$ (x + 2)(x - 3) = 0 x = -2 or 3 \therefore (-2, 0) and (3, 5)	b $4x + 11 = x^2 + 3x - 1$ $x^2 - x - 12 = 0$ (x + 3)(x - 4) = 0 x = -3 or 4 ∴ (-3, -1) and (4, 27)	c $2x-1 = 2x^2 + 3x - 7$ $2x^2 + x - 6 = 0$ (2x-3)(x+2) = 0 $x = -2 \text{ or } \frac{3}{2}$ $\therefore (-2, -5) \text{ and } (\frac{3}{2}, 2)$

ARE YOU READY?

Complete on paper and hand in to your Maths teacher in your first lesson.

You will find some this challenging – don't worry!

Try your best and give each question a go – we just want to see what you can do.

1. $(3\sqrt{2} - 3) \operatorname{cm} \downarrow$

The diagram shows a rectangle measuring $(3\sqrt{2} - 3)$ cm by *l* cm. Given that the area of the rectangle is 6 cm², find the exact value of *l* in its simplest form.

2. Given that $x = 2^{t-1}$ and $y = 2^{3t}$, a find expressions in terms of t for i xy ii $2y^2$

3. Solve $x - 5 + \frac{4}{x} = 0$

4.

The diagram shows the curve with equation $y = 2x^2 - 8x + 3$. Find and simplify the exact coordinates of the points where the curve crosses the *x*-axis.

5.

- a Express $x^2 4\sqrt{2}x + 5$ in the form $a(x+b)^2 + c$.
- **b** Write down an equation of the line of symmetry of the curve $y = x^2 + 4\sqrt{2}x + 5$.
- 6. The line y = 5 x intersects the curve $y = x^2 3x + 2$ at the points *P* and *Q*. Find the length *PQ* in the form $k\sqrt{2}$.