Year 11 \rightarrow **12 transition**

— Quadratics

Starter

What does a quadratic look like?

How many solutions does it have?

At GCSE you learnt 3 techniques for solving quadratics, what were they?

HINT: a) _A _ O _ I _ I _ _

b) _UA__A_I_ _O__U_A

c) _O___E_I__ __E __UA_E

Starter

Factorise

a
$$x^2 + 4x + 3$$

b
$$x^2 + 7x + 10$$

c
$$y^2 - 3y + 2$$

d
$$x^2 - 6x + 9$$

Factorise **a**
$$2x^2 + 3x + 1$$

b
$$2 + 7p + 3p^2$$

c
$$2y^2 - 5y + 3$$

d
$$2 - m - m^2$$

Factorise

a $x^2 + 4x + 3$ b $x^2 + 7x + 10$		c $y^2 - 3y + 2$	d $x^2 - 6x + 9$	
(x+1)(x+3)	(x+2)(x+5)	(y-1)(y-2)	(x-3)(x-3)	
Factorise	L 2 + 7 - + 2 - 2	2 2 5 1 2	2	

a $2x^2 + 3x + 1$ b $2 + 7p + 3p^2$ c $2y^2 - 5y + 3$ d $2 - m - m^2$ (2x+1)(x+1) (3p+1)(p+2) (2y-3)(y-1) (m+2)(1-m)

Example - Solving equations using factorisation

$$a x^2 - 4x + 3 = 0$$

Solving equations using factorisation

Using factorisation, solve each equation.

a $x^2 - 4x + 3 = 0$ **b** $x^2 + 6x + 8 = 0$ **c** $x^2 + 4x - 5 = 0$ **d** $x^2 - 7x = 8$

e $x^2 - 25 = 0$ **f** x(x - 1) = 42 **g** $x^2 = 3x$ **h** $27 + 12x + x^2 = 0$

a)
$$x^2 - 4x + 3 = 0$$
 $x = 3$
 $(x - 1)(x - 3) = 0$
 $x = 1$ or $x = 3$
b) $x^2 + 6x + 8 = 0$ $x = 8$
 $(x + 2)(x + 4) = 0$
 $x = -2$ or $x = -4$
c) $x^2 + 4x - 5 = 0$ $x = -5$
d) $x^2 - 7x = 8$
 $x^2 - 7x - 8 = 0$ $x = -7$
 $(x - 8)(x + 1) = 0$
 $x = 8$ or $x = -1$
e) $x^2 - 25 = 0$
 $(x - 5)(x + 5) = 0$
 $x = 5$ or $x = -5$

f)
$$x(x-1) = 42$$

 $x^2 - x - 42 = 0$ $x = -42$
 $(x - 7)(x + 6) = 0$
 $x = 7$ or $x = -6$
g) $x^2 = 3x$
 $\Rightarrow x^2 - 3x = 0$
 $\Rightarrow x(x - 3) = 0$
 $x = 0$ or $x = 3$
h) $27 + 12x + x^2 = 0$ $x = 3$
 $(x + 3)(x + 9) = 0$
 $x = -3$ or $x = -9$

Challenge: Solve these tricky quadratics

i
$$60 - 4x - x^2 = 0$$

$$(2x+5)^2 = 5-x$$

$$e \frac{5}{x^2} + \frac{4}{x} - 1 = 0$$

IRICKY
i)
$$60 - 4x - x^2 = 0$$

 $x^2 + 4x - 60 = 0$ $x = -40$
 $(x + 10)(x - 6) = 0$
 $x = 6$ or $x = -10$

S)
$$(2x+5)^2 = 5-x$$

 $(2x+5)(2x+5) = 5-x$
 $4x^2 + 20x + 25 = 5-x$
 $4x^2 + 21x + 20 = 0$ $\xrightarrow{\times 7} 80$
 $4x^2 + 5x + 16x + 20 = 0$
 $x(4x+5) + 4(4x+5) = 0$
 $(x+4)(4x+5) = 0$
 $x = -4$ or $x = -5/4 = -1.25$
e) $\frac{5}{x^2} + \frac{4}{x} - 1 = 0$ xx^2
 $5 + 4x - x^2 = 0$
 $x^2 - 4x - 5 = 0$
 $(x-5)(x+1) = 0$
 $x = 5$ or $x = -1$

Simultaneous equations

Solve each pair of simultaneous equations.

$$\mathbf{a} \quad y = 3x$$

$$y = 2x + 1$$

b
$$y = x - 6$$

$$y = \frac{1}{2}x - 4$$

c
$$y = 2x + 6$$

$$y = 3 - 4x$$

b)
$$y = x - 6$$

 $y = \frac{1}{2}x - 4$
 $x - 6 = \frac{1}{2}x - 4$
 $\frac{1}{2}x - 2 = 0$
 $\frac{1}{2}x = 2$
 $x = 4$, $y = -2$
c) $y = 2x + 6$
 $y = 3 - 4x$
 $2x + 6 = 3 - 4x$
 $6x + 3 = 0$
 $6x = -3$
 $x = -\frac{1}{2}$, $y = 5$

Solving simultaneous equations with quadratics

$$x^2 - y + 3 = 0$$
$$x - y + 5 = 0$$

Solving simultaneous equations with quadratics

Solve each pair of simultaneous equations.

a
$$x^2 - y + 3 = 0$$

 $x - y + 5 = 0$
b $2x^2 - y - 8x = 0$
 $x + y + 3 = 0$
c $x^2 + y^2 = 25$
 $2x - y = 5$

$$x-y+5=0$$
 $x+y+3=0$ $2x-y=5$
d $x^2+2xy+15=0$ **e** $x^2-2xy-y^2=7$ **f** $3x^2-x-y^2=0$
 $2x-y+10=0$ $x+y=1$ $x+y-1=0$

b)
$$2x^{2}-y-8x=0$$

 $x+y+3=0 \Rightarrow y=-x-3$
 $2x^{2}-(-x-3)-8x=0$
 $\Rightarrow 2x^{2}-7x+3=0$
 $2x^{2}-6x-x+3=0$
 $2x(x-3)-1(x-3)=0$
 $\Rightarrow (2x-1)(x-3)=0$
 $\Rightarrow (2x-1)(x-3)=0$
 $\Rightarrow (x-1)(x-3)=0$
 $\Rightarrow (x-1)(x-1)(x-3)=0$
 $\Rightarrow (x-1)(x-1)(x-1)=0$
 $\Rightarrow (x-1)(x-1)(x-1)=0$
 $\Rightarrow (x-1)(x-1)=0$
 $\Rightarrow (x-1)(x-1)=0$

d)
$$x^2 + 2xy + 15 = 0$$

 $2x - y + 10 = 0 \Rightarrow y = 2x + 10$
 $x^2 + 2x(2x + 10) + 15 = 0$
 $x^2 + 4x^2 + 20x + 15 = 0$
 $5x^2 + 20x + 15 = 0 \Rightarrow 5$
 $x^2 + 4x + 3 = 0$
 $(x + 3)(x + 1) = 0$
 $x = -1$ or $x = -3$
 $y = 8$ or $y = 4$
e) $x^2 - 2xy - y^2 = 7$
 $x + y = 1 \Rightarrow y = 1 - x$
 $x^2 - 2x(1 - x) - (1 - x)(1 - x) - 7 = 0$
 $x^2 - 2x + 2x^2 - (1 - 2x + x^2) - 7 = 0$
 $x^2 - 2x + 2x^2 - 1 + 2x - x^2 - 7 = 0$
 $2x^2 - 8 = 0$
 $2x^2 = 8$
 $x^2 = 4$
 $x = -2$ or $x = 2$
 $y = 3$ or $y = -1$

```
3x2-x-y2=0
3x^2 - x - (1-x)(1-x) = 0
3x^2 - x - (1 - 2x + x^2) = 0
3x^2 - x - 1 + 2x - x^2 = 0
2x^{2} + x - 1 = 0
2x^{2} + 2x - x -
2x(x+1) - 1(x+1) = 0
(2x-1)(x+1)=0
         then y = 2
if x= 1/2 then y= 1/2
```

Extension 1

Solve each of the following equations.

a
$$x-5+\frac{4}{x}=0$$
 b $x-\frac{10}{x}=3$ **c** $2x^3-x^2-3x=0$

e
$$\frac{5}{x^2} + \frac{4}{x} - 1 = 0$$
 f $\frac{x-6}{x-4} = x$ g $x+5 = \frac{3}{x+3}$

- a) x=4 or x=1
- b) x=-2 or x=5
- c) x=0 or x=3/2 or x=-1
 - e) x=-1 or x=5
 - f) x=2 or x=3
 - g) x=-2 or x=-6

Extension 2

Solve each pair of simultaneous equations.

$$x - \frac{1}{y} - 4y = 0$$
 $x - y = 6$ $x - 6y - 1 = 0$ $x - y = 5$

a
$$x - \frac{1}{y} - 4y = 0$$
 b $xy = 6$ **c** $\frac{3}{x} - 2y + 4 = 0$

4x + y - 7 = 0

Extension 2

Solve each	pair o	i simultaneous	equations.

a
$$x - \frac{1}{y} - 4y = 0$$
 b $xy = 6$

$$\mathbf{b}^{-}xy - \mathbf{c}^{-}$$

$$x - 6y - 1 = 0$$

$$x - y = 5$$

$$c \quad \frac{3}{x} - 2y + 4 = 0$$
$$4x + y - 7 = 0$$