Year 7 Science knowledge organiser

Module - Energy

Topic – Energy costs and energy transfers **Length of topic** – Approx. 8 lessons **Method of assessment** – Summative and Levelled assessment

Links to prior learning

KS₂ Year 4 Electricity topic

 identify common appliances that run on electricity

Knowledge to be taught.

- We pay for our domestic electricity usage based on the amount of energy transferred.
- Electricity is generated by a combination of resources which each have advantages and disadvantages.
- We can describe how jobs get done using an energy model where energy is transferred from one store at the start to another at the end.
- When energy is transferred, the total is conserved, but some energy is dissipated, reducing the useful energy.

To be secure I must show...

- I can compare the energy usage and cost of running different home devices.
- I can explain the advantages and disadvantages of different energy resources.
- I can represent the energy transfers from a renewable or non-renewable resource to an electrical device in the home.
- I can describe how the energy of an object depends on its speed, temperature, height or whether it is stretched or compressed.
- I can show how energy is transferred between energy stores in a range of real-life examples.
- I can calculate the useful energy and the amount dissipated, given values of input and output energy.
- I can explain how energy is dissipated in a range of situations.

Working scientifically strands covered

Analyse patterns	\checkmark
Discuss limitations	\checkmark
Draw conclusions	\checkmark
Present data	✓
Communicate ideas	✓
Construct explanations	✓
Critique claims	\checkmark
Justify opinions	✓
Collect data	✓
Devise questions	
Plan variables	
Test hypothesis	
Estimate risks	
Examine consequences	✓
Review theories	
Interrogate	\checkmark
· · · · · · · · · · · · · · · · · · ·	

Assessment

Summative assessment based on knowledge taught through the topic

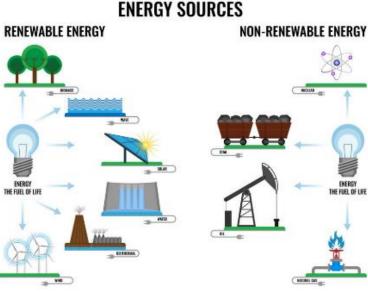
Levelled assessment – Where does electricity come from?

Pupils will need to show they can:

- Use diagrams with brief descriptions to explain how electricity can be generated using coal and wind.
- Describe the difference between *renewable* and *non-renewable* resources.
- Give reasons for the merits for using both coal and wind to generate electricity
- Draw an accurate Sankey diagram showing the energy transfer through a television

Year 7 Science knowledge organiser

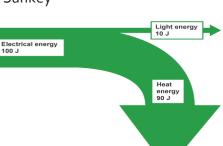
Facts


Food labels list the energy content of food in kilojoules (kJ).

Each grilled burger (94g) contains

of an adult's reference intake Typical values (as sold) per 100g: Energy 966kJ / 230kcal

Electricity is generated by a combination of renewable and non-renewable resources which each have advantages and disadvantages.



Bouncing balls cannot go on forever as energy is dissipated.

You can show energy transfers in a Sankey

diagram. The thicker the arrow, the greater the amount of energy involved.

Keywords

Chemical energy store: Emptied during chemical reactions when energy is transferred to the surroundings.

Dissipated: Become spread out wastefully. Elastic energy store: Filled when a material is stretched or compressed.

Energy resource: Something with stored energy that can be released in a useful way. Finite resource: Resource that can only be used once and is in limited supply. For example, oil is a finite resource.

Fossil fuels: Non-renewable energy resources formed from the remains of ancient plants or animals. Examples are coal, crude oil and natural gas.

Joules: The unit of work or energy, written as J. Kinetic energy store: Filled when an object speeds up.

Generator: Device that converts kinetic energy into electrical energy.

Geothermal: Energy from the heat of the Earth. Gravitational potential energy store: Filled when an object is raised.

Non-renewable: An energy resource that cannot be replaced and will be used up.

Nuclear fuels: Radioactive materials, usually uranium or plutonium, used in nuclear reactors. **Power:** How guickly energy is transferred by a device (watts).

Renewable: An energy resource that can be replaced and will not run out. Examples are solar, wind, waves, geothermal and biomass. Thermal energy store: Filled when an object is warmed up.

Turbine: Revolving machine with blades that are turned by wind, water or steam. Turbines in a power station turn the generators. Watt: The unit of power.