

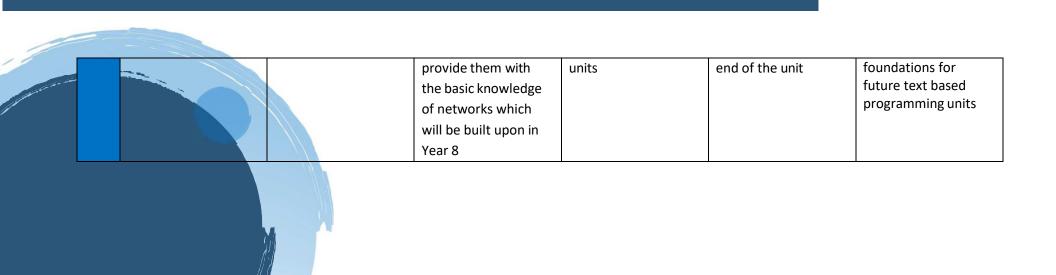
Statement of Curriculum Intent Computing – KS 1,2,3 and 4

"The intent of our ICT curriculum is to empower students with the essential knowledge and skills required to navigate and thrive in our increasingly digital world. Through a dynamic and engaging learning experience, we aim to instill in students a deep understanding of information and communication technologies, fostering their creativity, critical thinking, and problem-solving abilities. Our goal is to not only equip students with the technical peoficiency necessary for the 21st century but also to nurture their digital citizenship, ensuring they approach technology with responsibility and ethical awareness. By integrating real-world applications and hands-on projects, we strive to make ICT a transformative force in their education, preparing them for future academic success and providing a solid foundation for a variety of career pathways.

Within our computing curriculum, we focus on the progression of skills in digital literacy, computer science, information technology and online safety to ensure that children become competent in safely using, as well as understanding technology. These strands are revisited repeatedly to ensure the learning is embedded and skills are successfully developed and built upon. Our intention is that computing also supports children's creativity and cross curricular learning to engage children and enrich their experiences in school.

The primary school phase of our ICT curriculum is designed to cultivate foundational skills and qualities that lay the groundwork for a lifelong relationship with technology. Students will develop proficiency in basic computer operations, keyboarding, and digital literacy. Through engaging activities and age-appropriate projects, they will explore the creative potential of software applications, enhancing their problem-solving

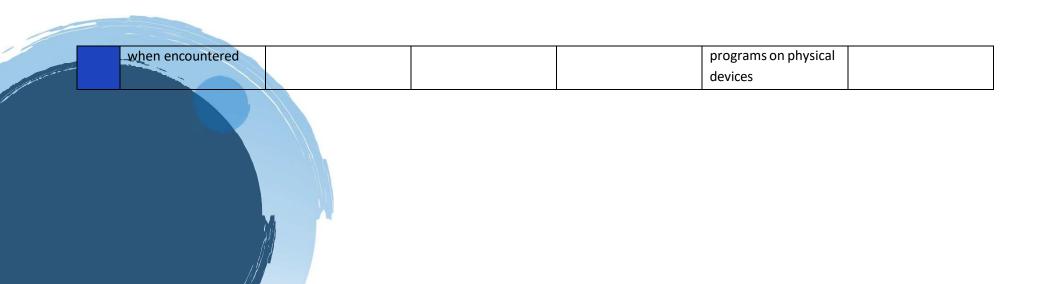
abilities and fostering a curiosity for technology. Our primary focus is on building a strong digital foundation, nurturing collaborative skills, and instilling a sense of responsible technology use. As they progress through these early years, students will gain confidence in their ability to navigate the digital landscape while developing a positive attitude towards learning and adapting to new technologies.


As students transition to the secondary school phase of our ICT curriculum, the focus expands to technical skills, critical thinking, and real-world applications. They will delve into programming using a range of physical devices, web development, and multimedia production, promoting their abilities to analyse complex problems and design innovative solutions. In addition, students will engage with ethical considerations surrounding technology, cultivating a strong sense of digital citizenship. By the end of their secondary school journey, our students will be well-equipped with the skills, qualities, and experiences necessary to thrive in higher education, enter the workforce, and contribute meaningfully to our ever-evolving digital society."

Computing Pathways at Shenstone Lodge School Shenstone Lodge Site – **EYFS** Academic support: Pastoral support: 1-2-1 sessions Mentoring Off-site trips Shenstone Lodge Site -Wellbeing team Variety of tech in Lower School Small class sizes classrooms Trusted adults Trauma informed Use of IT to engage practice Shenstone Lodge Site – **Upper School** The Brades Lodge Site – Key stage 3 The Brades Lodge Site – OCR Entry Level 1,2 & 3

Shenstone Lodge School Computing Long Term Plan 2023-24

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Trolls	Online safety	1.2 Grouping &	Coding	Lego Builders	Maze Explorers	Animated stories
	1,1	Sorting	1.7	1.4	1.5	1.6
		1.3 Pictograms				
Cyclops	Online safety	Making Music	Creating	Coding	Presenting ideas	Spreadsheets
	1.1	2.7	Pictures	2.1	2.8	2.3
			2.6			
Siren	Online safety	Online safety	Effective	Coding	Creating Pictures	Making Music
	2.2	2.2	searching 2.5	2.1	2.6	2.7
Dragons	Online safety	Email	Touch typing	Coding	Simulations	Presenting with
	3.2	3.5	3.4	3.1	3.7	PowerPoint 3.9
Unicorns	Online safety	Email	Touch typing	Coding	Simulations	Presenting with
	3.2	3.5	3.4	3.1	3.7	PowerPoint 3.9
Pegasus	Online safety	Effective	Coding	Logo	Animation	Sending emails
	4.2	searching	4.1	4.5	4.6	
		4.7				
Griffin	Online safety	Effective	Coding	Logo	Animation	Sending emails
	4.2	searching	4.1	4.5	4.6	
		4.7				
Centaur	Online safety	3D modelling	Coding	Game creator	Word processing	Databases
	5.2	5.6	5.1	5.5	5.8	5.4
Minotaur	Online safety	3D modelling	Coding	Game creator	Word processing	Databases
	5.2	5.6	5.1	5.5	5.8	5.4
YR 7	Online safety		Coding	Sending emails	Powerpoint	
	6.2		6.1			


ر شنند							
		Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Ϋ́	Clear Messaging In	Modelling Data Using	Computing Systems –	Programming	Programming	Developing For The
	Year	Digital Media	Spreadsheets	Communication &	Essentials in Scratch	Essentials in Scratch	Web (HTML)
	7			Collaboration	– Part I	– Part II	
		Provide basic skills for	Give students a basic				Introduce students to
		school life across all	introduction to the	Learners will look at	Introduce students to	Build upon the basic	another form of
		curriculums	use of Microsoft Excel	how data is	a form of coding and	framework of	coding that they can
			which is used widely	transferred over the	build their confidence	programming	use at a basic level to
		Series of	across the school	internet and how the	and knowledge of the	students learnt in the	create simple
		individualised ///	curriculum and	internet facilitates	key programming	previous topic which	webpages
		lessons/activities that	leading into job	online	constructs	introduced students	
		will provide the basic	prospects	communication and		to Scratch	Using a series of
		framework for		collaboration	Using a series of		individualised
		knowledge building	Through a series of		lessons and activities,	Using a series of	lessons/activities,
ž		e.g. adding folders to	projects students	A series of	students will	lessons and activities,	students will
		a network/ saving and	learn how to input,	individualised	demonstrate their	students will	demonstrate their
		printing documents	format and sort/filter	lessons/activities that	ability to produce	demonstrate their	understanding of the
			data in a way that will	will focus on that will	simple code and	ability to produce	basic features of
		By the end of this unit	give them the skills to	allow students to	apply problem solving	simple code and	webpages and how
		students should be	access higher learning	share projects online	skills to resolve	apply problem solving	they can create their
		able to demonstrate		and evaluate different	scenarios	skills to resolve	own webpages that
		basic computing skills	Students will have	methods of		scenarios	could potentially be
		that can be used	learnt skills that will	communication	Students will gain a		hosted on the web
		across the curriculum	be transferrable		basic understanding	Learners will be able	
		such as accessing	across the curriculum	Students will learn	of programming	to demonstrate the	This unit will provide
		files, using search	(e.g. Maths/Science)	how to collaborate	which will include the	ability to create their	students with a basic
		engines to gather	by constructing	and communicate	ability to create	own subroutines	understanding of
		information and using	spreadsheets that	appropriately online	variables, sequences	within scratch and	static webpages and CSS. It will also
		appropriate	represent data and	by considering what	and iterations which	build upon their	introduce them to
		application software	provide an outcome	should and what	can then be used as a	problem solving skills	their form of text
				shouldn't be shared	platform to build	by working through a	based programming
				online. This will also	upon in subsequent	larger project at the	that will lay the

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
~	Computing Systems	Networks – From	Physical	Swift: Learn To Code	Swift: Learn To Code	Binary
Year		Semaphore to the	Programming with	1 & 2	1 & 2	Representation
\sim	Introduce students to	Internet	MicroBit			
	the inner workings of			Highlight key coding	Highlight key coding	Gradually introduce
	physical computers	Provide students with	To refresh and apply	concepts while	concepts while	students to binary
	including the use of	the knowledge of	previous	demonstrating how	demonstrating how	numbers and how
	software, hardware	networks and how	programming	coding is a way of	coding is a way of	they can be used to
	and artificial	data is transmitted	knowledge to	thinking that can be	thinking that can be	represent text and
	intelligence	across a variety of	practical scenarios	applied to other	applied to other	numbers
		platforms (e.g.	using a micro:bit	subjects and everyday	subjects and everyday	
	Series of	internet, computers,	device	life. In part 2,	life. In part 2,	Using a series of
	individualised	networks) and the		students will then	students will then	individualised
	lessons/activities that	various different	A series of	build upon their	build upon their	lessons/activities,
	will provide the	communication	individualised lessons	knowledge of Swift by	knowledge of Swift by	students will
	opportunity to delve	protocols that we	and activities that	learning more ways	learning more ways	demonstrate their
<u></u>	into the inner	must adhere to	allow students to	to use code to	to use code to	understanding of
	workings of		apply the theory of	interact with their	interact with their	binary numbers by
	computers and	Series of	programming to	characters and world	characters and world	linking them to
	identifying the	individualised	practical scenarios	112		practical applications
	difference between	lessons/activities that	using the micro:bit	Using a series of lessons, activities and	Using a series of	and problems that
	hardware and	allow students to	device	reflection activities,	lessons, activities and	the students may be
	software	explore the		students will be	reflection activities,	familiar with
		framework of	Students will be able	required to	students will be	
	Through the use of	networks and identify	to apply their	demonstrate their	required to	The purpose of this
	summative	how data is	previous knowledge	ability to code and	demonstrate their	unit is to introduce
	assessments students	transmitted across	of programming to	complete a variety of tasks to meet lesson	ability to code and	students to binary
	will be required to	them	solve scenarios using	objectives	complete a variety of	numbers which we
	identify the common	Students will be able	the micro:bit. This will	Objectives	tasks to meet lesson	will cover more in
	hardware	to explain how	allow them to		objectives	depth when the
	components such as	networks are used to	strengthen their			students reach KS4
	hard drive, RAM and	allow communication	knowledge of			and start working
	CPU as well as	and also access to the	programming			towards their

	I			
_common software	world wide web	techniques such as		gualification
				9
applications such as	through the use of	variables, sequences		
applications sacinas	through the use of	variables, sequences		
proprietary and open	servers and data	and other techniques		
proprietary and open	Joint Cra arra data	and other teeringaes		
source software	packets			
Source Software	packets			

سندير		Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
if the same of	~	Cybersecurity	Swift: Learn to code	Introduction to	Python Programming	Applying	Data Science
	Year		3	Python Programming	with Sequences of	Programming Skills	
	9	Give the students a			Data	with Physical	Delve into Data
		basic introduction to	Build on the	Introduce learners to		Computing	Science and identify
		keeping themselves	knowledge students	text based	This unit will		how we can visualise
		online and identifying	have learnt in the	programming using	introduce students to	Apply and enhance	data to identify
		common threats they	previous "Learn To	Python	how data can be	the students	patterns and trends
		may encounter online	Code" units and give		represented and	programming skills	in order to gain
		//	students access to a	Using a range of	processed in	using the micro:bit	insights
		Series of	wide variety of	lessons and activities,	sequences, such as	and write simple	
		individualised	coding languages	students will start	lists and strings	programs that use	Through the use of a
		lessons/activities/and		with simple programs		python code	series of
		student led research	Through a series of	involving	Using a series of		individualised
1		into the different	individualised	inputs/outputs	lessons and activities,	Using a series of	lessons/activities,
1000		types of online	lessons, students will	before moving onto	students will cover a	lessons/activities,	students will build
		threats such as	learn aspects of	arithmetic	spectrum of	student will	their knowledge of
		malware, spyware	coding and apply	operations, selection	operations on	demonstrate their	data science and how
		and worms. We also	them using practical	and iterations	sequences of data,	knowledge of python	it can be used to
		cover real life effects	activities		that range from	coding in	identify trends in
		of attacks and how		Students will be able	accessing an	combination with	data
		these cyberattacks	Students will able to	to demonstrate the	individual element to	using the micro:bit to	
		can be prevented	use problem solving	basics of using a text	manipulating an	code, flash and test	Students will build
			skills to complete	based form of coding	entire sequence	programs	the confidence to
		Make students aware	activities that they	with Python which			analyse data and conduct their own
		of the dangers online	may face in real life	will lead into the next	Students will be able	Students will be able	research topic that
		and how they can	coding scenarios	unit of broadening	to demonstrate their	to combine what they	can be visualised in
		identify them. Also,		their knowledge of	understanding of	have learnt in the	order to identify
		to provide them with		text based	Python by	previous topics along	trends and gain
		ways of preventing		programming and	experimenting with	with the current topic	insights
		and reporting them		prepare them for KS4	sequences of data	and create text based	

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
~	Entry Level –	Entry Level –	Entry Level –	Entry Level –	Entry Level – Programmin	g Project
Year	Computer Hardware	Computer Memory &	Computational Logic	Programming		
10	& Software	Storage and Moral,	& Algorithms	Techniques & Data	Apply content covered in t	he Entry Level
) and		Legal, Cultural and		Representation	qualification and create a d	coding project that
립	Provide students with	Environmental	Provide students with		meets the qualification spe	ecification
11	the knowledge of	Concerns	the knowledge of	Provide students with	Students will use time in le	esson to create their
	computer hardware	11/	computational logic	the knowledge of	own coding project that m	eets the qualificatio
	and software in order	Provide students with	and algorithms in	programming	specification. This will requ	uire them to plan,
	to achieve an entry	the knowledge of	order to achieve an	techniques and data	write, test and evaluate a	simple coded
	level qualification in	computer memory &	entry level	representation in	program using a coding lar	nguage of their
	Computer Science	storage and moral,	qualification in	order to achieve an	choice. This can be a text b	oased language such
		legal, cultural and	Computer Science	entry level	as Python or a drag and dr	op language such a
	A series of	environmental		qualification in	scratch	
	individualised lessons,	concerns in order to	A series of	Computer Science		
عن	activities and student	achieve an entry level	individualised lessons,		Provide students with the	knowledge required
	research into the	qualification in	activities and student	Using a series of	in order to achieve in their	Entry Level
	hardware	Computer Science	led research will	individualised lessons,	Computer Science qualification	ation
	components that		cover the topics of	activities and student		
	make computers	A series of	computational	led research we will		
	function will be	individualised lessons,	thinking and	cover topics that		
	delivered. We will	activities and	algorithms which	include variables,		
	also cover Software	research tasks will	includes Boolean	selection, iterations,		
	and the different	allow students to	logic, arithmetic	operators and units of		
	types available to use,	discover the main	operators and	memory		
	their purpose and	components of	computational			
	also the advantages	computer memory	thinking	Provide students with		
	and disadvantages of	and how they work		the knowledge		
	using them	together to function	Provide students with	required in order to		
		along with the	the knowledge	achieve in their Entry		
	Provide students with	legislation that	required in order to	Level Computer		
	the knowledge	protects everyone	achieve in their Entry	Science qualification		

	required in order to	from computer	Level Computer	
4	achieve in their Entry	misuse	Science qualification	
	Level Computer			
	Science qualification	Provide students with		
		the knowledge		
		required in order to		
		achieve in their Entry		
		Level Computer		
		Science qualification		