

5-Year Curriculum Plan

Curriculum at a Glance

Year 7

- Number- The Four Rules, Place Value, Converting
Fractions
- Algebra Sequences, understanding notation.
- Shape and Space Area of shapes, Geometric Reasoning, Construction.
- Data - Probability, Statistical Diagrams.

Year 8

- Number - Direct proportion, multiplication and division of
fractions, indices, percentages
- Algebra Manipulation, solving equations, solving inequalities
- Shape and Space Area of circles, angles in parallel lines
- Data - Probability, Interpret statistical diagrams

Year 9

- Number - Standard form, approximation and estimation.
- Algebra Expressions, brackets and graphs
- Shape and SpaceTransformations, angles in polygons, Pythagoras
- Data - MMMR

Year 10

- Number- Indices, Direct and Inverse proportion, Standard Form, Compund Units, Bounds
- Algebra Expanding and Factorising, Rearranging Formulae, Inequalities
- Shape and Space Angles, - Similar shapes, -Volume and Surface Area, Trigonometry, Construction
- Data - Probability, Representing data, - Graphs

Year 11

- Graphs- Gradients, intercepts and equation of the line
- Non- Linear Graphs
- Algebra Expanding, factorising and rearranging.Function and proof
- Shape and Space Angles in parallel lines, angles in polygons

Focus / Term	Half Term One	Half Term Two	Half Term Three	Half Term Four	Half Term Five	Half Term Six
Year 7 Topic Covered and End Points	Probability Record describe and analyse the frequency of outcomes Addition and Subtraction Use formal written methods applied to positive integers and decimals. Recognise and use relationships between operations including inverse operations Sequences Generate terms of a sequence from a term-to-term Recognize and use Fibonacci type sequences and geometric sequences	Place Value Understand and use place value for decimals, measures and integers of any size. Order positive and negative integers, use the number line as a model for ordering of the real numbers; use <,>, =. Multiplication \& Division Formal written methods, applied to positive integers and decimals; Select and use appropriate calculation strategies to solve increasingly complex problems. Recognise and use relationships between operations including inverse operations; Use the concepts and vocabulary factors (or divisors), multiples, common factors, common multiples, HCF, LCM.	Area Identify and use formula to calculate area of shapes. Converting \& ordering FDP Understand and use place value for decimals, measures and integers of any size. Understanding Algebraic notation Move freely between numerical, algebraic, graphical and diagrammatical representations. Use algebra to generalise the structure of arithmetic, including to formulate relationships.	Shape Properties Use three letter notations to identify angles Classify types of angles Directed Number Select and use appropriate calculation strategies to solve increasingly complex problems. Use the four operations, including formal written methods, applied to integers, both positive and negative. Recognise and use relationships between operations including inverse. Percentages of Amounts Use the four operations, including formal written methods, applied to integers, decimals, proper and improper fractions. Interpret fractions and percentages as operators.	Construction Draw and measure line segments including geometric figures. Use three letter notations to identify angles. Classify types of angles. Add and Subtract Fractions Add and subtract fractions from an integer, with the same denominator, with different denominators Prime and Proof Use concept and vocabulary of prime numbers, factors, multiples, HCF, LCM, prime factor decomposition. Look for proofs and counter examples.	Geometric Reasoning Apply the properties of angles at a point, on a line and in a triangle. Understand and use relationship between parallel lines and corresponding angles (H). Statistical diagrams Represent data in a variety of ways

NC	Data, Algebra, Number	Number.	Shape and Space, Number, Algebra	Shape and Space, Number,	Shape and Space, Number, Algebra	Shape and Space, Data
Powerful Knowledge and Careers	Probability language Add Fibonacci					
Tier 3 Words	PROBABILITY OUTCOME CERTAIN LIKELY IMPOSSIBLE	APPROXIMATE INTEGER INTERVAL MEDIAN NEGATIVE PLACE PLACE VALUE RANGE	Polygon Triangle Quadrilateral Fraction Decimal Percentage Function Input Output	Scalene Isosceles Right angled Subtract Negative Product Equivalent Whole	NUMERATOR DENOMINATOR Multiples Factors Primes	Vertically Opposite Interior Exterior
Long Term Retrieval	Students will complete an assessment in first lesson which will inform retrieval	Probability Add subtract Sequences	Probability Add subtract Sequences Place Value Multiply Divide	Probability Sequences Place Value 4 Rules ($+-x \div$) Area FDP Algebraic Notation	Probability Sequences Place Value 4 Rules ($+-\mathrm{x} \div$) including directed number Area FDP Algebraic Notation Shape properties Fractions of amounts	Probability Sequences Place Value 4 Rules ($+-x \div$) with directed number Area FDP Algebraic Notation Shape properties Fractions of amounts Add subtract fractions Prime and Proof
Assessment Details	Mid-point - Probability and add and subtract fractions with common denominator. End Point Probability, Add and subtract fractions and Sequences.	Mid-point - Place value. End Point - Place value, multiplication, and division.	Mid-point - Area and Converting FDP. End Point - Area, Converting FDP and algebraic notation.	Mid-point - Shape properties, add subtract directed numbers. End Point - Shape properties, directed numbers, fractions of amounts.	Mid-point Construction, add and subtract fractions with common denominator. End Point Construction, add and subtract fractions, prime and proof.	Mid-point Geometric reasoning End Point Geometric reasoning and Statistical diagrams.

Misconceptions	Probability it will rain is always 50/50 as it will either rain or it will not. Add/Sub Incorrect setting out of formal method where decimal points are not aligned Sequences "The $4^{\text {th }}$ term will be double the $2^{\text {nd }}$ term. $100^{\text {th }}$ is ten times the tenth, etc.	Place Value A number with more digits is greater than one with less. E.g., 9.999999999 9 is greater than 10. Multiplication and Division Multiplication/Division by 10 can be done by 'taking off a zero'	Area Once students know to divide by two for triangles, they will divide by two for rectangles FDP Unclear on the denominator meaning how many equal parts. Algebraic Notation $A=1, b=2$ or other 'codebreaker' ideas.	Directed number Students may confuse positive and negative and counters; may add only negative or positive counters instead of zero pairs or make mistakes with signs when performing operations, e.g., -1 x-$3=-3$. Fractions of amounts Because dividing by 10 gives you 10% dividing by 5 will give you 5% and dividing by 20 gives 20% etc You cannot increase by over 100\% because 100% is everything.	Construction Measure lines from 1cm. Incorrectly measure angles from outer value on protractor always. Add and Sub fractions Ensure students know denominator is total number of parts. Prime and Proof LCM as HCF and vice versa.	Geometric reasoning Any angles on a straight line are included in angle sum to 180°. Statistical diagrams. When comparing two pie charts just considering fraction covered rather than total data
Homework	- Probability - Add and Subtract - Sequences	- HT1 Review - Place Value - Multiply and Divide	- Term 1 Review - Convert FDP - Algebraic notation	- HT3 Review - Shape properties - Directed number	- Term 2 Review - Construction - Add and Sub fractions	- HT5 Review - Geometric reasoning - Statistical diagrams
Year 8 Topic Covered and End Points	Sets and Probability Identify and represent sets. Interpret and create Venn diagrams Know and use the vocabulary of probability Generate sample spaces for single events	Ratio and Scale Understand the meaning and representation of ratio Understand and use ratio notation Solve problems involving ratios of the form 1: n (or n : 1)	Scatter Graphs and Frequency Table Draw and interpret scatter graphs Understand and describe linear correlation Draw and use line of best fit	Share in a Ratio Share an amount in a ratio Calculate different parts from a given value of one part Calculate different parts from a given difference in amount Indices	Angles in Parallel lines Understand and use basic angle rules and notation Investigate angles between parallel lines and the transversal Identify and calculate with alternate and corresponding angles	Equations and Inequalities Solve linear equations with the unknown on one side when calculating with negative numbers is required Solve linear equations with the unknown on both sides when the solution is a whole number

Calculate the probability of a single event Understand and use the probability scale
Know that the sum of probabilities for all possible outcomes is 1 Experimental probability
Algebraic Manipulation Collect terms
Brackets - expanding etc (see solve equations 2)
Form algebraic
expressions
Use directed number with algebra
Multiply out a single bracket
Expand multiple single brackets and simplify Multiply binomial

Multiplicative Change

Solve problems involving direct proportion including recipe problems
Explore conversion graphs
Convert between currencies Inverse proportion
Understand scale
factors as

Solve problems involving ratios of the form m : n
Express ratios in their simplest integer form Express ratios in the form 1 : n (H)
Compare ratios and

fractions

Cartesian Plane

Work with coordinates in all four quadrants Find the midpoint of a line (H)
Identify and draw lines that are parallel to the axes
Recognise and use the line $y=x$ Recognise and use lines of the form $y=k x$ Recognise and use lines of the form $y=x+$ a Link $y=k x$ to direct proportion problems Plot graphs of the form $y=m x+c$

Solving Equations

Solve equations, including with brackets Form and solve equations with brackets
Solve Equations with unknown on both sides

Identify different types of data	Adding and subtracting expressions with
Read and interpret	indices
ungrouped frequency tables	Simplifying algebraic expressions by
Represent grouped	multiplying indic
discrete data	Simplifying algebraic
Read and interpret grouped frequency	expressions by dividing indices
tables	Using the addition la
Represent continuous	for indices
data grouped into equal classes	Using the addition and subtraction law for
Multiply and Divide	indices
Fractions	Expand b
Represent	use laws of indices

Identify and calculate with co-interior, alternate and corresponding angles Solve complex problems with parallel line angles
Interpret Charts and Diagrams Set up a statistical enquiry
Design and criticise questionnaires Draw and interpret line graphs
Choose the most appropriate diagram for given set of data Represent and interpret grouped quantitative data Find and interpret the range
Compare distributions using charts Identify misleading

graphs

Convert Units
Convert metric measures of lengths
Convert metric units of weight and capacity

Solve linear equations with the unknown on both sides when the solution is a fraction Solve linear equations with the unknown on both sides when the solution is a negative number
Solve linear equations with the unknown on both sides when the equation involves brackets
Represent linear inequalities on a number line
Solve one sided linear inequalities.
Solve two sided linear inequalities

Percentages

 Identify the multiplier for a percentage increase or decrease Use calculators to increase an amount by a percentage greater than 100\%Use calculators to decrease an amount by a percentage Solve problems involving percentage change Solve original value problems when working with percentages Solve financial problems including simple interest

	multiplicative representations Draw and interpret scale diagrams		*Extend to mixed numbers Sequences Generate sequences given a rule in words Generate sequences given a simple algebraic rule Generate sequences given a complex algebraic rule Nth Term			Area, circles Recap area of simple shapes (rectangle triangle and parallelogram) Calculate area of trapezium Calculate the circumference of a circle when radius or diameter is given Calculate the perimeter of composite shapes including sections of a circle Calculate the area of a circle when radius or diameter is given Calculate the area of composite shapes that include sections of a circle Calculate area of sectors Calculate perimeter of sectors
NC	Data Algebra Number	Data Algebra Ratio	Data Algebra Number	Number Ratio	Data Number Geometry	Algebra Number Geometry
Tier 3 Vocab	OUTCOMES PROBABILITY SET SIMPLIFY SUBSTITUTE EQUIVALENT PROPORTION VARIABLE AXES	RATIO EQUAL PARTS PROPORTION QUADRANT COORDINATE HORZIONTAL SIMPLIFY SUBSTITUTE EQUIVALENT	VARIABLE RELATIONSHIP CORRELATION NUMERATOR DENOMINATOR WHOLE SEQUENCE TERM POSITION	RATIO EQUAL PARTS PROPORTION BASE POWER EXPONENT	PARALLEL ANGLE TRANSVERSAL HYPOTHESIS SAMPLING PRIMARY DATA COMMUTATIVE ASSOCIATIVE DIVIDEND	LINEAR PARALLEL SOLVE MULTIPLER PERCENTAGE AREA CIRCUMFERENC- TRAPEZIUM CHORD

						RADIUS DIAMETER
Long Term Retrieval	Year 7 Assessment	Sets and Probability, Algebraic Manipulation, Multiplicative Change.	Sets and Probability, Algebraic Manipulation, Multiplicative Change. Ratio and Scale, cartesian Plane, Solving Equations	Sets and Probability, Algebraic Manipulation, Multiplicative Change. Ratio and Scale, cartesian Plane, Solving Equations. Scatter Graphs and Frequency Table, Multiply and divide fractions, Sequences	Sets and Probability, Algebraic Manipulation, Multiplicative Change. Ratio and Scale, cartesian Plane, Solving Equations Scatter Graphs and Frequency Table, Multiply and divide fractions, Sequences Share in a Ratio, Indices	Sets and Probability, Algebraic Manipulation, Multiplicative Change. Ratio and Scale, cartesian Plane, Solving Equations Scatter Graphs and Frequency Table, Multiply and divide fractions, Sequences Share in a Ratio, Indices Angles in Parallel lines, Interpret Charts and Diagrams Convert units
Assessment details	Mid-point - Sets and Probability, expand single brackets End Point - Sets and Probability, Algebraic Manipulation, Multiplicative Change	Mid-point - Ratio and Scale, recognise the equation $y=x$ End Point - Ratio and Scale, cartesian Plane, Solving Equations	Mid-point - Scatter Graphs and Frequency Table, multiply unit fractions End Point - Scatter Graphs and Frequency Table, Multiply and divide fractions, Sequences	Mid-point - Share in a Ratio End Point -_Share in a Ratio, Indices	Mid-point - Angles in Parallel lines, Design and criticise questionnaires Draw and interpret line graphs End Point - Angles in Parallel lines, Interpret Charts and Diagrams Convert units	Mid-point Equations and Inequalities, identify the multiplier for a percentage increase or decrease End Point - Equations and Inequalities, Percentages, Area, circles
Misconceptions	Sets and Probability equivalence can be revisited in the study of probability	Ratio and Scale Students might use addition and subtraction rather	Scatter Graphs and Frequency Table Students think that the line of best fit has	Share in a Ratio Some students believe ratios always	Angles in Parallel lines Students might think that any angles on a	Equations and inequalities Some pupils may think that you always

	Understand that probability is number of desired outcomes ／total possible outcomes and that this is the same as parts of a whole when using fractions． Algebraic Manipulation Students think 2a and a^{2} are equal Students think 2a＋ $3 b=5 a b$ Multiplicative Change Pupils might use addition／subtraction instead of multiplication or division	than multiplication and division Cartesian Plane Students plot points or write co－ordinates to understand why y $=a$ is parallel to the x axis Solving Equations Students struggle with the starting point when forming－they need to understand to start from the unknown（which can be any letter）and build up from there	to go through all the points and through the origin． Multiply and Divide Fractions Students might think they need the reciprocal of both fractions in a divide question Students might think multiplying always makes the number larger Sequences Students think＂the $4^{\text {th }}$ term will be double the $2^{\text {nd }}$ term． $100^{\text {th }}$ is ten times the tenth etc．．．	compare a part to a whole，like fractions． Indices Students might think you multiply the indices when the base is being multiplied	straight line are included in angle sum to 180° so be sure to include angles on a straight line at different points to show variation Interpret Charts and Diagrams Students might think that the range is an average Convert Units Students will not always be clear when to multiply or divide	have to manipulate the equation to have the unknowns on the LHS of the equal sign， for example $2 x-3=$ $6 x+6$ Percentages Some students may think the multiplier for， say，a 20% decrease is 0.2 rather than 0.8 Area of Circles and Trapezium Some pupils may use the sloping height when finding cross－ sectional areas that are parallelograms， triangles or trapezia
Homework	－Topics covered that week and longer term for retrieval	－Topics covered that week and longer term for retrieval	－Topics covered that week and longer term for retrieval	－Topics covered that week and longer term for retrieval	－Topics covered that week and longer term for retrieval	－
Year 9 Topic Covered and End Points	Indices and Standard form Identify types of numbers（factors， multiples and prime） Write a number as a product of its prime factors Use prime factorisations to find the HCF and LCM of two numbers Solve problems using highest common	Sequences ind the nth term of an ascending linear sequence Find the nth term of a descending linear sequence Generate terms of a sequence from a position－to－term rule Use the nth term of a sequence to deduce if a given number is in a sequence	Angles in Polygons Round numbers to a given number of significant figures Estimate numerical calculations Determine whether calculation using rounding will give an underestimate or over estimate Find upper and lower bounds（and error intervals）for rounding and truncation	3D shapes Surface area of cubes and cuboids Find volume of cubes and cuboids Find volume of cylinder Find volume of prisms Surface area of cylinder Expressions and Brackets Manipulate expressions by multiplying a single	Representing data Find the mean， median，mode and range of a set of data Find the range and modal class of set of grouped data and the class containing the median of a set of data Calculate an estimate of the mean from a frequency table Calculate an estimate of the mean from a	Graphs Know that graphs of functions of the form y $=m x+c, x$ 回 $y=c$ and ax ${ }^{\text {a }} \mathrm{by}=\mathrm{c}$ are linear Plot graphs of functions of the form y $=\mathrm{mx}$ 回 Plot graphs of functions of the form $a x$ 回 $b y=c$ Find the gradient of a straight line on a unit grid

factors or lowest common multiples Multiply and divide using index laws. (number only) Fractional, negative index laws (number only)
Use standard form to write large numbers Use standard form to write small numbers Calculate with standard from

Transformations

Reflect and object in a mirror line Rotate an object around a point Translate an object Describe a rotation Describe a translation Describe a reflection Enlarge a shape with a positive and fractional scale factor Enlarge a shape with a positive scale factor from a centre Enlarge a shape with a fractional scale factor from a centre Enlarge a shape with a negative scale factor from a centre Describe an enlargement Combine transformations
Recognise and use the
Fibonacci sequences
and geometric
sequence sequence Explore growing patterns and other problems involving quadratic sequences Find the next terms of a quadratic sequence using first and second differences
Generate terms of a quadratic sequence from its nth term Find the nth term of a quadratic sequence Approximation and estimation
Manipulate expressions by multiplying a single term over a bracket (the distributive law) Expanding two single brackets Multiply two linear expressions of the form ($a x \pm b$) $(c x \pm d)$ Factorising into a single bracket
Factorising quadratic (x $\pm b)(x \pm d)$ Substitute into a formula
Change the subject of a formula when one step is required

Calculate with upper and lower bounds

Fractions

onvert between mixed and improper fractions Apply addition to proper fractions, improper fractions and mixed numbers Apply subtraction to proper fractions, improper fractions and mixed numbers Multiply a proper fraction by a proper fraction Multiply mixed numbers Divide a proper fraction by a whole number
Divide mixed numbers Increase/decrease by a fraction of an amount Find a starting amount after an
Increase/decrease by a fraction

Pythagoras

Know the meaning of a Pythagorean triple Know and use Pythagoras' theorem Calculate the hypotenuse of a rightangled triangle using Pythagoras' theorem in two dimensional figures
term over a bracket (the distributive law) Expanding two single brackets
Multiply two linear expressions of the form ($a x \pm b$) $(c x \pm d)$ Factorising into a single bracket
Factorising quadratic (x $\pm b)(x \pm d)$
Substitute into a formula
Change the subject of a formula when one step is required
Change the subject of a formula when a two steps are required Apply an understanding of inverse operation to a formula in order to make a specific variable the subject

		Change the subject of a formula when a two steps are required Apply an understanding of inverse operation to a formula in order to make a specific variable the subject	Calculate one of the shorter sides in a rightangled triangle using Pythagoras' theorem in two dimensional figures Solve problems using Pythagoras' theorem in two dimensional figures		Set up and solve a trigonometric equation when the unknown is in the denominator of a fraction Set up and solve a trigonometric equation to find a missing angle in a right-angled triangle Use trigonometry to solve problems	Combine techniques to solve more complex loci problems
NC	Number Geometry	Algebra Number Geometry	Number Geometry	Algebra Geometry	Data Geometry	Algebra Geometry
Tier 3 Vocab	Factor Multiple Prime Translation Transformations Reflection	Linear sequence Quadratic Term Significant Figure Estimate	Improper fraction Mixed numbers Right angle Hypotenuse	Cube Cuboid Cylinder Substitute Formula Quadratic	Mean Median Mode Range Sine/Cosine/Tangent Opposite Adjacent	Bisect Parallel Perpendicular X-axis $Y \text { - axis }$ Gradient Intercept
Long Term Retrieval	Year 8 Assessment	Indices and Standard form Transformations	Indices and Standard form Transformations Sequences Approximation and estimation	Indices and Standard form Transformations Sequences Approximation and estimation Angles in Polygons Fractions Pythagoras	Indices and Standard form Transformations Sequences Approximation and estimation Angles in Polygons Fractions Pythagoras 3D shapes Expressions and Brackets	Indices and Standard form Transformations Sequences Approximation and estimation Angles in Polygons Fractions Pythagoras 3D shapes Expressions and Brackets Representing data Trigonometry
Assessment Details	Mid-point - Indices	Mid-point Sequences	Mid-point Angles in Polygons	Mid-point - 3D shapes	Mid-point Representing data	Mid-point - Graphs

	movement between the two shapes. When carrying out a reflection some pupils may think that the object and image should be an equal distance from the edge of the grid, rather than an equal distance form the mirror line. Some students will wrestle with the idea that a line $x=a$ is parallel to the y-axis Some students may think that the centre of rotation is always in the centre of the shape Some pupils may think that the centre of enlargement always has to be $(0,0)$, or that the centre of enlargement will be in the centre of the object shape.		ng mixed numbers, e.g. 3-2 Pythagoras Some students may use Pythagoras' theorem as though the missing side is always the hypotenuse	When working with an expression such as 5 a , some students may think that if $a=2$, then $5 a=52$. Some students may think that $3(\mathrm{~g}+4)=3 \mathrm{~g}+4$ The convention of not writing a coefficient of 1 (i.e. ' $1 x$ ' is written as ' x ' may cause some confusion. In particular some students may think that $5 \mathrm{~h}-\mathrm{h}=5$	opposite labels are not fixed, and are only relevant to a particular acute angle. In situations where both angles are given this can cause difficulties. Some students may not balance an equation such as $\sin 35$ = 4/x correctly, believing that the next step is $(\sin 35) / 4=x$	therefore requires an arc as part of the locus)
Homework	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	

YEAR 10-11

Focus / Term	Half Term One	Half Term Two	Half Term Three	Half Term Four	Half Term Five	Half Term Six
Year 10 Topic Covered and End Points	Trigonometry Choose an appropriate trigonometric ratio that can be used in a given situation	Formula Solve two linear simultaneous equations in two variables in very simple cases (addition \& subtraction but no multiplication required)	Graphs (H) Identify and interpret gradients of linear functions graphically Identify and interpret intercepts of linear functions algebraically	Quadratics Solve a quadratic equation of the form x^{2} $+b x+c=0$ by factorising Solve a quadratic equation by rearranging and factorising	Inequalities (HIGHER) Construct and shade a graph to show a linear inequality of the form y $>a x+b, y<a x+b, y$ $\geq a x+b$ or $y \leq a x+b$	Trigonometry + Use Pythagoras' theorem in 3D. Use trigonometry in 3D. Solve bearings problems using trigonometry.

	Understand that sine, cosine and tangent are functions of an angle Use a calculator to find the sine, cosine and tangent of an angle Indices Know and use the fact that $\mathrm{a}-\mathrm{n}=1 / \mathrm{an}$ Know and use the fact that $\mathrm{a}^{1 / n}=\mathrm{n} \sqrt{ }$ a Writing a number as a power of another Solving equations involving powers Probability List outcomes of an event systematically Use frequency trees to record outcomes of probability experiments Use 2way tables to record outcomes of probability experiments List all elements in a combination of sets using a Venn diagram Use theoretical probability to calculate expected outcomes Use experimental probability to calculate expected outcomes	Solve two linear simultaneous equations in two variables in simple cases (multiplication of one equation only required) Solve two linear simultaneous equations in two variables in simple cases (multiplication of both equations required Representing data Calculate an estimate of the mean from a frequency table Calculate an estimate of the mean from a grouped frequency table Construct and interpret graphs of time series Construct and interpret frequency polygons	Find the equation of a line through one point with a given gradient Find the equation of a line through two given points. Similar Shapes Identify similarity of shapes in a range of situations Finding missing lengths in similar shapes Solve problems with area/volume of similar shapes Convert between units of length, area \& volume. Quadratics Solve a quadratic equation of the form x^{2} $+b x+c=0$ by factorising Solve a quadratic equation by rearranging and factorising Find approximate solutions to quadratic equations using a graph (including higher question Solve by formula Solve by completed square	Find approximate solutions to quadratic equations using a graph (including higher question Direct \& inverse Proportion Know and recognise the difference between direct and inverse proportion Know the features of graphs that represent a direct or inverse proportion situation Solve problems involving direct proportion using the constant of proportionality $y=k x$ Volume and Surface area Calculate volume and surface area of pyramids, cones and spheres Solve problems involving pyramids, cones and spheres Solving frustum questions using similar shapes	Construct and shade a graph to show a linear inequality in two variables stated implicitly Construct and shade a graph to represent a set of linear inequalities in two variables. Surds Solve problems involving the simplification of surds Addition \& subtraction of surds Multiply two binomials involving surds Rationalise the denominator of a surd expression Compound units Convert between compound units of density and pressure Solve problems involving density Solve problems involving pressure	Find the area of a triangle and a segment of a circle Construction Use ruler and protractor to construct triangles, and other shapes, from written descriptions Use ruler and compasses to construct triangles when all three sides known Use ruler and compasses to construct the perpendicular bisector of a line segment Use ruler and compasses to bisect an angle Use a ruler and compasses to construct a perpendicular Bounds Know and understand limits of accuracy. Find Upper and Lower bounds Calculate with Upper and Lower bounds
NC	Data, Shape Number	Algebra. Data	Shape and Space, Algebra.	Number. Shape and Space,	Number. Algebra.	Number. Shape and Space,
Tier 3 Words	Function Sine Cosine Tangent	Linear Equation Estimate Mean	Quadratic Similar Convert Area	Area Volume Surface Area	Compound Density Surd Inequality	Loci Perpendicular Parallel Segment

	Adjacent Outcome Event	Frequency	Volume		Variable	Arc
Long Term Retrieval	Students will complete a bench mark assessment	Trigonometry Indices Probability	 Trigonometry Indices Probability Formula Representing data	Trigonometry Indices Probability Formula Representing data Graphs Similar Shapes	Trigonometry Indices Probability Formula Representing data Graphs Similar Shapes Direct \& inverse Proportion Volume and Surface area	Trigonometry Indices Probability Formula Representing data Graphs Similar Shapes Direct \& inverse Proportion Volume and Surface area Inequalities (HIGHER Surds Compound units
Assessment Details	Mid-point - Trigonometry Indices Probability End Point - Summative of all 3	Mid-point - Formula Representing data End Point - Summative of all $2+$ HTI	Mid-point - Graphs Similar Shapes End Point - Summative of all 2 + T1	Mid-point - Quadratics, Direct \& inverse Proportion Volume and Surface area End Point - Summative of all and previous	Mid-point -. Inequalities (HIGHER Surds Compound units End Point Summative of all 3 and previous topics	Mid-point - Trigonometry + Construction Bounds End Point - Summative of all 3 and previous
Misconceptions	Ensure that all students are aware of the importance of their scientific calculator being in degrees mode. Ensure that students do not round until the end of a multi-step calculation This unit of trigonometry should focus only on right-angled triangles in two dimensions. Common approaches	Pupils should build on the experiences of using the grid method to expand products of more than two binomials. $\begin{aligned} & \operatorname{Eg}(x+2)(x+3)(x-4)= \\ & \left(x^{2}+5 x+6\right)(x-4)=x^{3}+ \\ & x^{2}-14 x-24 \end{aligned}$ Teachers also need to help pupils 'see' the difference of two squ ares by using pictorial representation Common approaches	Common approaches Pupils are taught to use positive numbers wherever possible to reduce potential difficulties with substitution of negative numbers .Students plot points with a ' x ' and not ' ${ }^{\text {Edot.Students draw graphs }}$ in pencil Misconceptions When plotting linear graphs some pupils may draw a line segment that stops at the two most extreme points plotted	Common approaches All students are taught to use the grid method to multiply two linear expressions. All students are taught to use the sum and product method to factorise quadrtics. Misconceptions Once students know how to factorise a quadratic expression of the form x^{2} $+b x+c$ they	Common approaches All Students are taught to manipulate algebraically rather than be taught 'tricks'. For example, in the case of $-2 x>8$, students should not be taught to flip the inequality when dividing by -2. They should be taught to add $2 x$ to both sides. Misconceptions	Common approaches The appropriate mnemon ic 'used to help students remember the trigonometric ratios Misconceptions Some students may label opposite and adjacent in a non-right-angled triangle Some students may not balance an equation such as $5=4 / \sin \theta$ correctly,

The appropriate mnemon ic 'used to help students remember the trigonometric ratios

Misconceptions

Some students may not appreciate the fact that adjacent and opposite labels are not fixed, and are only relevant to a particular acute angle. In situations where both angles are given this can cause difficulties. Some students may not balance an equation such as $\sin 35=4 / x$ correctly, believing that the next step is $(\sin 35) / 4=x$ Some students may think that $\sin ^{-1} \theta=1 \div \sin \theta$ Some students may think that $\sin \theta$ means $\sin \times \theta$ Common approaches Pattern sniffing is encouraged to establish the result $a^{0}=1, a^{-n}=$ $1 / a^{n}$, i.e. $2^{3}=2 \times 2 \times 2=8,2^{2}=2 \times$ $2=4, \quad 2^{1}=2, \quad 2^{0}=1, \quad 2^{-}$ $1=$

Use Grid method when multiplying surds

Misconceptions

Some students may think that negative indices change the sign of a number, for example $2^{-1}=$ -2 rather than $2^{-1}=$ Common approaches

Students manipulate algebra tiles to explore factoring quadratics The difference of two squares is explained using visual representation

Misconceptions

Some pupils may incorrectly estimate the mean by dividing the total by the numbers of groups rather than the total frequency.
Some pupils may incorrectly think that there can only be one model class

Students may think that a sketch is a very rough drawing. It should still identify key features. Some students do not rearrange the equation of a straight line to find the gradient of a straight line. For example, they think that the line $y-2 x=6$ has a gradient of -2 .
Misconceptions
Many students will want to identify an additive relationship between two quantities that are in proportion and apply this to solve problems The word 'similar' means something much more precise in this context than in other contexts students encounter. This can cause confusion
mig
sim
fact
suc
+2
Ma simpler case factorising an expression such as $x^{2}+2 x(\equiv(x+0)(x$ +2))
Many students may think that $(x+a)^{2} \equiv x^{2}+a^{2}$

Common approaches

All students are taught to set up a 'proportion table' and use it to find the multiplier in situations involving direct proportion Misconceptions Many students will want to identify an additive relationship between two quantities that are in proportion and apply this to solve problems Some students may think that a multiplier always has to be greater than 1
Students will need to be reminded of the key formula, in particular the importance of the perpendicular height when calculating areas and the correct use of πr^{2}. Note: some students may only find the area of the three 'distinct' faces when finding surface area.
Common approaches
Students visualise and write down the shapes of
all the faces of a prism

Some pupils may think that it is possible to multiply or divide both sides of an inequality by a negative number with no impact on the inequality (e.g. if $-2 x>12$ then $x>-$ 6)

Some pupils may think that strict inequalities, such as $\mathrm{y}<2 \mathrm{x}+3$, are represented by a solid, rather than dashed, line on a graph
Some pupils may shade the incorrect region Common approaches Pattern sniffing is encouraged to establish the result $a^{0}=1, a^{-n}=$ $1 / a^{n}$, i.e. $2^{3}=2 \times 2 \times 2=8, \quad 2^{2}=2 \times$ $2=4,2^{1}=2,2^{0}=1,2^{-}$ ${ }^{1}=$
Use Grid method when multiplying surds Misconceptions Some students may think that negative indices change the sign of a number, for example $2^{-1}=$ -2 rather than $2^{-1}=$ Some students may think $=$
Some students may think that Some students may write $\sqrt{ } 4 \times 3$ when they should write (or $\mathrm{V}(4 \times 3)$) Common approaches
believing that the next step is $\sin \theta=5 / 4$ Some students may think that $\cos ^{-1} \theta=1 \div \cos \theta$ Misconceptions When constructing the bisector of an angle some students may think that the intersecting arcs need to be drawn from the ends of the two lines that make the angle.
When constructing a locus such as the set of points a fixed distance from the perimeter of a rectangle, some students may not interpret the corner as a point (which therefore requires an arc as part of the locus) The north elevation is the view of a shape from the north (the north face of the shape), not the view of the shape while facing north
Misconceptions Students think to get the highest value you use the highest bound not allowing for division like wise for finding the lower value

	Students are taught not to simply fractions when finding probabilities of combined events using a tree diagram (so that a simple check can be made that the probabilities sum to 1) Misconceptions Some students may think that there are only three outcomes when two coins are flipped, or that there are only six outcomes when three coins are flipped Some students may think that there are 12 unique outcomes when two dice are rolled			before calculating the surface area. Misconceptions Some students will work out $(\pi \times r)^{2}$ when finding the area of a circle Some students may use the sloping height when finding cross-sectional areas that are parallelograms, triangles or trapezia Some students may confuse the concepts of surface area and volum	All students are taught to set up a 'proportion table' and use it to find the multiplier in situations involving direct proportion Misconceptions Many students will want to identify an additive relationship between two quantities that are in proportion and apply this to solve problems Some students may think that a multiplier always has to be greater than 1	
Homework	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	- Topics covered that week and longer term for retrieval	- SPARX	- SPARX	\bullet

Sir William Stanier School

	Plot and read quadratic graphs/cubic graphs Recognise graph shapes. Using Graphs Distance Time Piece Time Speed time	Changing the subject Form and solve equations. Rearrange simple formula Rearrange complex formula Functions Use function notation Graphs of functions	Prove geometric facts Circle theorems Algebraic reasoning Sequences, linear quadratic Simultaneous equation Inequalities	Product rule for counting		
NC	Geometry Algebra	Algebra	Algebra Number	Algebra Number		
Tier 3 Words	Gradient Linear Quadratic	Expand Factorise Subject	Proportion Inverse Parallel Polygon	Venn Scatter Loci Product		
Long Term Retrieval	Starters and LSQ from areas of improvement in bench mark and Mock 1	Starters and LSQ from areas of improvement in bench mark and Mock 1	Starters and LSQ from areas of improvement in bench mark and Mock 1 and 2	Starters and LSQ from areas of improvement in bench mark and Mock 1 and 2		
Assessment Details	Bench Mark/Mock 1	Weekly LSQ	Mock 2 and Weekly LSQ	Weekly LSQ		
Misconceptions	Changing order of co-ordinates to avoid getting negative gradient. Two negatives make a plus in every situation -2 squared $=-4$	Only multiply the first and last terms in expansion of double brackets. Rearranging without using inverse operations	Confusing interior Angles with exterior angles. Finding one solution to a simultaneous equation and not checking with second one	Enlarging from a point and starting enlargement from that point. Translating and using the top as up/down		
Homework	- Topics related to prior learning	- Topics based on QLA	- Topics based on QLA	- SPARX - topics related to prior learning	- SPARX - topics related to prior learning	-

