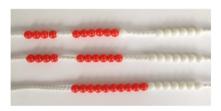

Sitwell Infant School

Calculation Policy

Addition

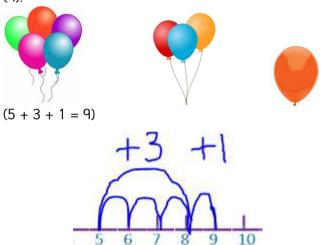
Objectives & Strategies	Concrete	Pictorial	Abstract
Combine two parts to make a whole: part- part- whole model. Introduced in FS2.	(4 + 3 = 7) Use concrete materials such as cubes to count out two numbers using objects. $(10 = 6 + 4)$ $(8 + 1 = 9)$	Use pictures or diagrams to add two numbers together. Count how many altogether. $ 8 $	Use the part-part whole diagram as shown above to represent adding numbers using digits. Complete number sentences using + and = to represent adding two numbers together. 5 + 3 = 8
Add a single digit and a two-digit number. (Start at the greatest number and count on) Introduced in FS2.	Use fingers by putting up both numbers and counting how many altogether. Start on the greatest number (12) on the bead string and separate the smaller number of beads (5) ready to count on. Count on the smaller number of beads (13, 14, 15, 16, 17) to find the total. (12 + 5 = 17)	Start at the greatest number on the number line and count on five jumps in ones to find the answer. 7 8 9 10 11 12 13 14 15 16 17 18 (12 + 5 = 17)	Place the greatest number in your head and put up the smaller number on your fingers. Count on one more for each finger. The number you finish on is your answer. Record in a number sentence using + and =. 12 + 5 = 17


Add three single digits.

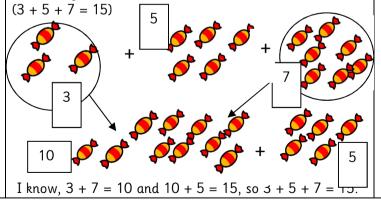
Introduced in Year 2.

(5 + 3 + 1 = 9)

Use concrete objects such as Numicon to represent the three numbers. Count how many altogether or start with the greatest number (5), count on the next number (3) and then the third (1). So count on three more from 5 (6, 7, 8) and then one more from 8 (9).

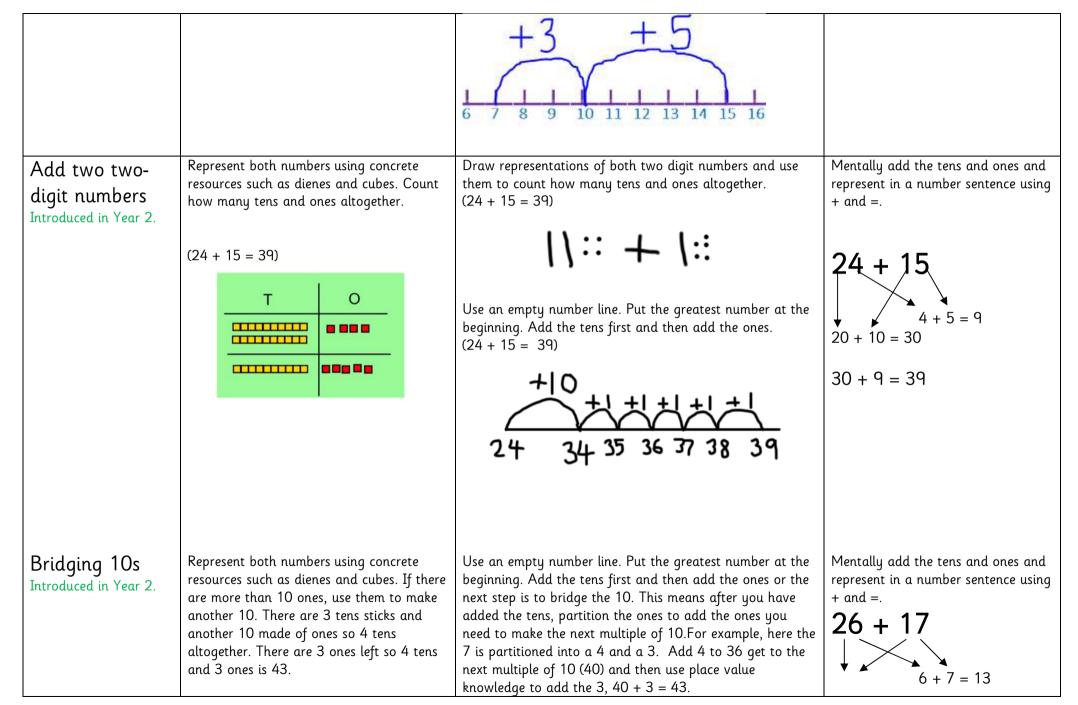


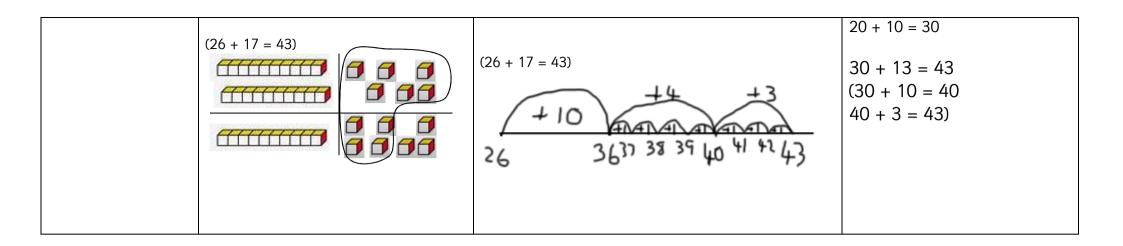
Where possible add two numbers to make 10 and add on the third number.


$$4 + 7 + 6 = 17$$

Put 4 and 6 together to make 10. Add on 7

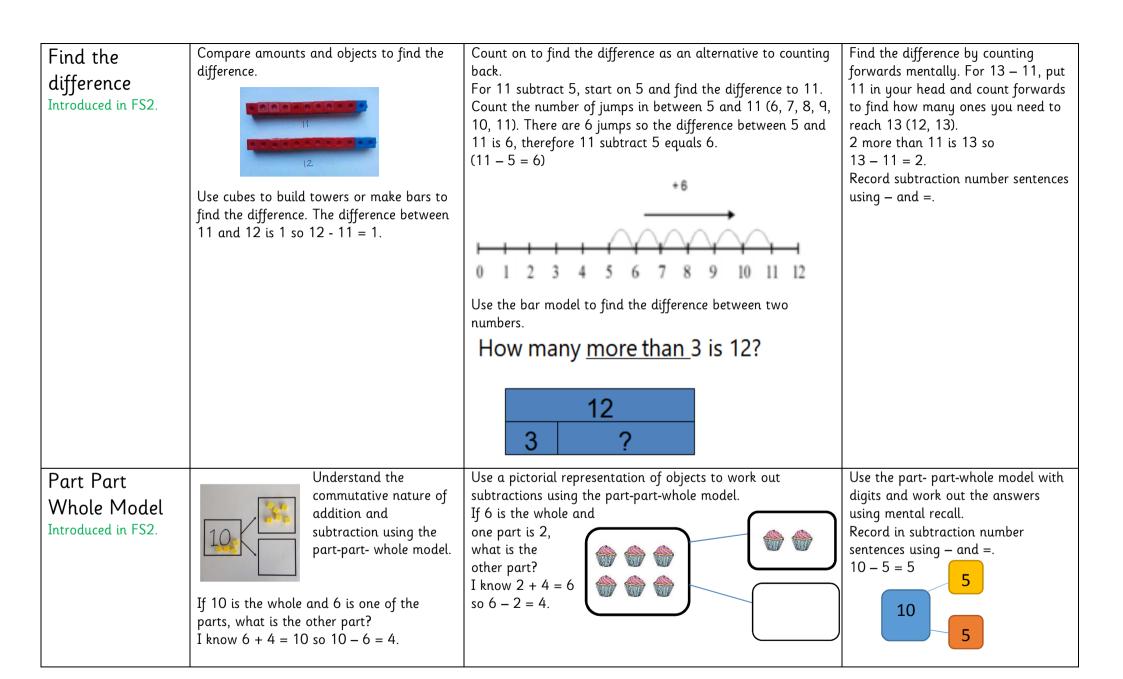
Use pictures or the number line to add three single digit numbers. Start with the greatest number (5), count on the next number of steps (3) and then the third (1). So count on three more from 5 (6, 7, 8) and then one more from 8 (9).

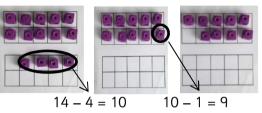

Use or draw pictures to represent each number. Regroup to make 10 where possible. If two of the numbers total 10, add them first and then add the third.



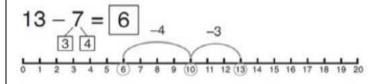
Mentally combine the two numbers that make 10 and then add on the third number using place value knowledge. Record in a number sentence using + and =.

$$4 + 7 + 6 = 10 + 7$$


$$= 17$$


Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones Introduced in FS2.	Use concrete objects such as counters to subtract by taking away. Get 6 counters, take two away and count how many are left. 6 take away 2 equals 4. $(6-2=4)$	Cross out drawn objects to show what has been taken away. Draw 10 pictures and take away 9 by crossing out. Count how many are left. 10 take away 9 equals 1. (10 – 9 = 1)	Complete number sentences using - and = to represent adding two numbers together. Recall subtraction facts such as related number bond facts. (10 - 3 = 7 10 - 7 = 3)
	Use fingers by putting up total and putting down the number being subtracted. Count the number of fingers left.		
Counting back Introduced in FS2.	Make the greatest (first) number in the subtraction. Move the beads along the bead string as you count backwards in ones.	Count back on a number line or number track $(13 - 4 = 9)$ Start on the greatest (first) number, 13 and count back 4 jumps. The number you land on is the answer.	Count back mentally. For 13 – 4, put 13 in your head and count back 4. Use fingers if needed. Record subtraction number sentences using — and =.
	(13 - 4 = 9) Start on 13 on the bead string and separate the number being subtracted (4) ready to count back. Count back in ones (12, 11, 10, 9) to find the quantity remaining.		



Regroup to bridge 10

Introduced in Year 1. N.B. This method is dependent on children being confident with number bonds to 10. Use concrete objects such as tens frames and cubes to subtract more quickly by bridging 10. Make 14 on the ten frame. Partition the 5 into 4 and 1. Take away 4 first to leave 10 and then takeaway 1 more so you have taken away 5 altogether. You are left with the answer of 9. (14-5=9)

Use a number line to subtract by counting back bridging 10. Start at 13. Partition the 7 into 3 and 4. Take away 3 first to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You are left with the answer 6.

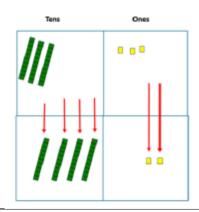
Work out subtractions by mentally bridging 10.

$$15 - 7 = 8$$

From 15 I know 15 – 5 = 10, so I need to partition 7 into 5 and 2.

$$15 - 7 = 15 - 5 - 2$$

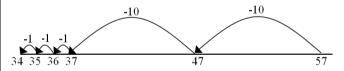
I know 15 - 5 = 10 and 10 - 2 = 8 so the answer must be 8.

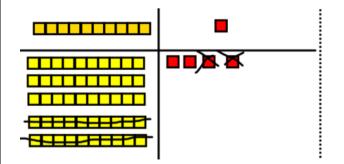

Record in a number sentence using - and =.

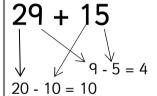
Subtract a two digit number from a two digit number Introduced in Year 2

Use concrete resources to represent the greatest (first) number. Take the smaller number away.

$$(75 - 42 = 33)$$


75 is equal to 7 tens and 5 ones. To subtract 42, take away 4 tens and 2 ones. Count how many tens and ones are left. There are 3 tens and 3 ones left so the answer is 33


Use an empty numberline.


$$(57 - 23 = 34)$$

Put the greatest (first) number at the right end of the line. Subtract 23 by subtracting the 2 tens first and then the three ones.

Draw the dienes and cubes or place value counters alongside the written calculation to help to show working out. (54 - 22 = 32)

$$10 + 4 = 14$$

Mentally subtract the tens and ones and represent in a number sentence using - and =.

Multiplication

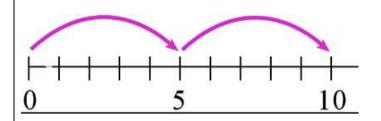
Counting in multiples

Introduced in Year 1 (2s, 5s, 10s)
Introduced in Year 2 (3s, 10s from any number)

Count in multiples using concrete objects in equal groups.

Make groups of five beads on the string. Count in 5s to find the total. There are four groups - 5...10...15...20 so the total is 20.

Make groups of two cubes. Count in twos to find the total. There are four groups -2...4...6...8 so the total is 8...



Use a number line or pictures to support counting in multiples.

There are six hands with five fingers. Count in 5s to find the total -5..10...15...20...25...30 so the total is 30.

Use the number line to jump in steps of five by starting on zero and jumping forwards 5.

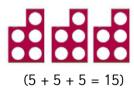
Count in multiples of a number aloud using mental recall.

Write sequences counting in multiples of numbers.

2, 4, 6, 8, 10

5, 10, 15, 20, 25 , 30

Fill in missing numbers in sequences counting in multiples of numbers.


3, 6, _, 12

35, _, 25, 20

Repeated addition

Introduced in Year 1

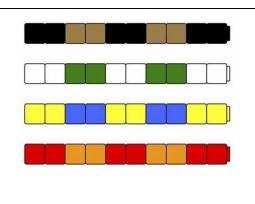
Use concrete objects to add a group repeatedly. Add three 5 pieces of Numicon. Add the 5s to find the total (either by counting all or counting on in 5s).

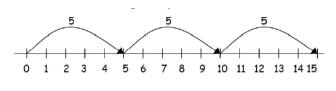
(5, 10, 15)

Add four blocks of 10 cubes (either by counting all or counting on in 10s).

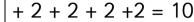
Use pictures to represent groups of the same quantity.

There are 4 groups of 2 hearts. Add 2s to find the total.


$$2 + 2 + 2 + 2 = 8 (2 \times 4 = 8)$$



Use a number line to add three 5s. Jump three steps of 5 and add them together to find the total.


Write repeated addition sentences using + and = to represent adding a number/quantity repeatedly.

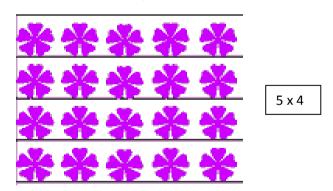
$$3 + 3 + 3 = 9$$

(10 + 10 + 10 + 10 = 40)

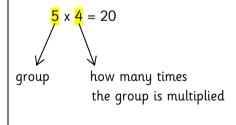
(10, 20, 30, 40)

Arrays

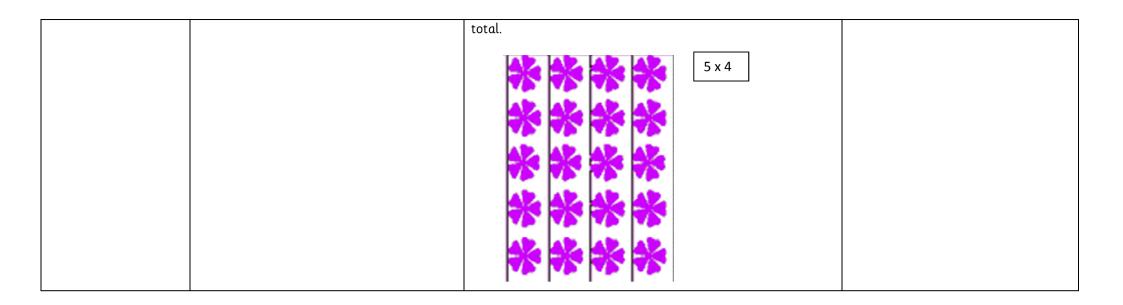
Introduced in Year 1


Create arrays using concrete materials such as counters/ cubes to show a group of a given quantity repeated.

Here 6 x 4 (six four times) is being represented by putting six counters in a row and repeating it four times. It also represents 4 x 6 (four six times). This demonstrates the commutative property of multiplication.


Draw and use pictures of arrays in different rotations to find commutative multiplication sentences.

This array shows 5 in a row multiplied by 4 (five four times or 5×4). Count in 5s to find the total -5, 10, 15, 20.


Learn multiplication facts as mental recall.

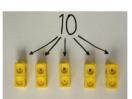
Write multiplication number sentences using x and =.

The same array can show 4 in a row multiplied by 5 (four five times or 4×5). Count in 4s to find the total -4, 8, 12, 16, 20. It is important that children understand that multiplication is commutative. For example,

5 x 4 and 4 x 5 are equal to each other and have the same

Division

Objectives & Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups Introduced in FS2.	Divide objects by sharing them into equal groups. Count out the correct quantity. Put one in each group until there are none	Children use pictures or shapes to share quantities into equal groups. $(8 \div 2 = 4)$	Work out sharing questions mentally. 'If I share 6 buns between three
	left. 10 shared into two equal groups is 5. (10 \div 2 = 5)		people, how many will they get each?' 'If the 6 buns are shared equally, the three people will get 2 buns each.' Record in a number sentence using ÷ and =.
	18 counters shared into three equal groups is 6. $(18 \div 3 = 6)$		

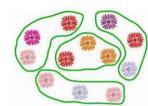

Division as grouping

Introduced in FS2.

Divide objects into groups of a given quantity.

Use cubes, counters, objects or place value counters to aid understanding.

Divide 10 by 2. If 10 cubes are split into groups of 2, 5 groups can be made. $(10 \div 2 = 5)$



Use pictures to make equal groups of a given quantity and then count how many groups can be made.

12 flowers are put into bunches of 3 flowers. How many bunches can be made? 4 bunches

between the total and O.

$$(12 \div 3 = 4)$$

Use a number line. Find the number being divided. Use jumps $20 \div 2 = 10 \quad 10 + 4 = 14$ to show how many steps of a given group can be made

Partition 28 into tens and ones (20 and 8). Divide 20 by 2 and 8 by 2 and add the answers to find the final answer.

Divide numbers into groups

 $12 \div 3 = 4$

 $28 \div 2 = 14$

mentally using mental recall and

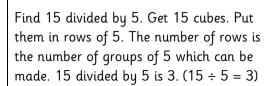
partitioning. Record using ÷ and

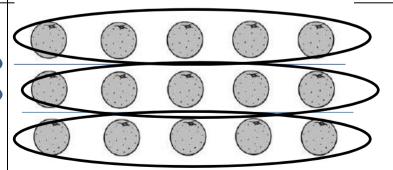
Understand that multiplication is the inverse of division and use this to support.

What is $18 \div 9$?

I know that $9 \times 2 = 18$ so

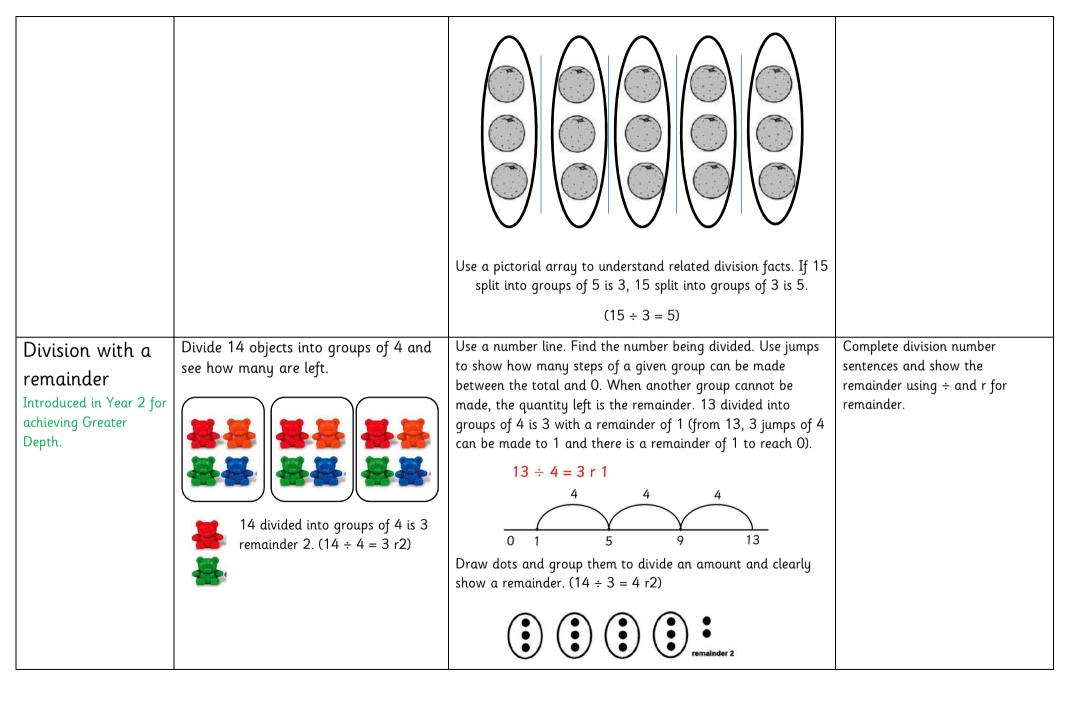
 $18 \div 9 = 2$.


9 10 11 12


12 divided into groups of 3 is 4 (from 12, 4 jumps of 3 can be made to (1) $(12 \div 3 = 4)$

Division using arrays

Introduced in Year 1.


Link division multiplication by creating an array.

Use a pictorial array and split the array into equal groups. 15 split into groups of 5 is 3. $(15 \div 5 = 3)$

As above.

