


- I can say the number before or after a number, dropping back to one. (Reception)
- I can stop and start in different places when counting forwards. (Reception)
- I can stop and start in different places when counting backwards. (Reception)
- I can count on and keep track of how many I have counted on. (Reception)
- I can count back and keep track of how many I have counted back. (Reception)
- I can see the recurring pattern in our number system and use this to help me to count higher. (Reception)
- I can enunciate each number clearly. (Reception)

Compare quantities of up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.

- I can order objects, such as towers of brick
- Lan order numerals 0 to 5 . (Reception) (Reception)
- I can place consecutive numbers in order, starting from a number other than one. (Reception)
- I can place non-consecutive numbers in order (initially with numbers 0 to 10 , then progressing to numbers 0 to 20 ). (Reception)
- I can place numbers in order from smallest to greatest and greatest to smallest. (Reception)
- I can place numbers in order in a meaningful context, such as scores in a game. (Reception)
- I can recognise when a group of objects is more than one. (Reception)
- I can indicate which group of objects has 'more' objects. (Reception)
- I can use number language, such as 'more' and 'a lot'. (Reception)
- I can indicate which set of objects has more or which set has less. (Reception)
- I can use number language such as 'less' or 'fewer'. (Reception)
- I can indicate which group of objects has 'fewer' objects. (Reception)
- I can recognise groups with one, two or three objects, and begin to make comparisons between quantities, using the language of 'more' and 'fewer'. (Reception)
- I can match groups of objects with the same number. (Reception)
- I know that the quantity of objects stays the same when they are spread out or moved closer together. (Reception)
- I know that the objects will appear different if they are spread out or are different sizes. (Reception)

I can say the number that comes after a given number in the sequence one to five, progressing to numbers from one to ten. (Reception)
I can say the number that comes before a given number in the sequence one to five, progressing to numbers from one to ten. (Reception)

- can find one more than a number to five, progressing to numbers to ten. (Reception)
- I can find one less than a number to five, progressing to numbers to ten. (Reception)
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.
- I can identify numbers to ten that are add or even, explaining my understanding to ten. (Reception)
- I can identify numbers to ten that are odd or even, explaining my understanding using concrete resources. (Reception)
- I can arrange small quantities into pairs and notice that some quantities will have an odd one left over with no partner (Reception)
- I can understand the concept of 'fair' and 'unfair' when objects or snacks are shared equally or unequally. (Reception)
- I can share fairly through practical activities such as putting food on plates of sharing toys equally. (Reception)
- I can use the vocabulary of sharing, such as 'equal groups', 'sharing fairy', 'sharing between', 'fair' and 'unfair'. (Reception)
- I can compare groups of objects, saying when they have the same number. (Reception)
- I can count the groups I have made and count how many objects are in each group. (Reception)
- I know that the original quantity remains unchanged after it has been shared equally. (Reception)
- I can solve simple problems that include sharing. (Reception)

Mathematics - Medium Term Plan






## Mathematics - Medium Term Plan




## Mathematics - Medium Term Plan




## Geometry: properties of

 shapes- to recognise angles as a property of shape or a description of a turn
- to identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle
- to identify horizontal, vertical, perpendicular and parallel lines in relation to other lines.
- to interpret and present data using bar charts, pictograms and tables
- to solve one-step and two-step questions such as 'How many more?' and 'How many fewer?' using information presented in scaled bar charts and pictograms and tables.
- I can draw 2-D shapes
- I can describe the properties of 2D shapes using accurate language including lengths of lines and angles
- I can make 3D shapes using modelling materials
- I can recognise 3D shapes in different orientations
- I can describe the properties of 3D shapes using accurate language including lengths of lines and angles
- I can describe 3D shapes from different orientations
- I can identify whether polygons and polyhedra have lines of symmetry
- I can recognise angles as a property of a shape
- I can recognise angles as a description of a turn
- I can identify right angles
- I can recognise that 2 right angles make a half turn
- I can recognise that 3 right angles make 3 quarters of a turn
- I can recognise that 4 right angles make a complete turn
- I can identify whether angles are greater than a right angle
- I can identify whether angles are less than a right angle
- I can identify horizontal and vertical lines in relation to other lines
- I can identify parallel lines in relation to other lines
- I can identify perpendicular lines in relation to other lines
- I can measure straight lines to the nearest centimetre
- I can connect decimals and rounding when drawing straight lines
- I can solve one step questions using information presented in a scaled bar chart.
- I can solve one step questions using information presented in a pictograms.
- I can solve one step questions using information presented in a table.
- I can solve two step questions using information presented in a scaled bar chart
- I can solve two step questions using information presented in a pictograms.
- I can solve two step questions using information presented in a pictogran
- I can interpret data presented in many contexts.




- to know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- to establish whether a number up to 100 is prime and recall prime numbers up to 19
- to multiply numbers up to 4 digits by a one- or two-digit number using an formal written method, including long multiplication for two-digit numbers
- to multiply and divide numbers mentally drawing upon known facts
- to divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- to multiply and divide whole numbers and those involving decimals by 10
- to recognise and use square numbers and cube numbers and the notation for squared numbers $\left(^{(2)}\right.$ and cubed $\left(^{3}\right)$


## Fractions <br> (including

 decimals and percentages)- I know what a prime number is
- I can use the term prime number correctly
- I know what a prime factor is
- I can use the term prime factor correctly
- I know what a composite (non-prime) number is
- I can use the term composite (non-prime) number correctly
- I know what a square number is
- I can use the term square number correctly
- I know what a cube number is
- I can use the term cube number correctly
- I can find if a number up to a 100 is a prime
- I can recall prime numbers up to 19 .
- I can multiply numbers up to 4 digits by a one digit number
- I can multiply numbers up to 4 digits by a two digit number.
- I can use a formal written method, including long multiplication for two digit number.
- I can multiply numbers mentally.
- I can divide numbers mentally
- I can multiply numbers drawing upon known facts.
- I can divide numbers drawing upon known facts.
- I can divide numbers up to 4 digits by a one digit number.
- I can divide numbers up to 4 digits by a two digit number.
- I can use a formal written method, including short division showing remainders suitable for the context.
- I can show my answers for division in different ways including remainders as fractions, decimals or by rounding.
- I can multiply whole numbers by 10,100 and 1000.
- I can multiply decimals by 10,100 and 1000
- I can divide whole numbers by 10,100 and 1000 .
- I can divide decimals by 10,100 and 1000
- I can multiply and divide by 1000 to convert between units g km and m
- I know what a square number is
- I can use the term square number correctly
- I can use the notation for square numbers.
- I know what a cube number is
- I can use the term cube number correctly
- I can use the notation for cubed numbers correctly.
- I can construct equivalent statements for square and cube numbers.
- I can solve problems using a combination of addition, subtraction, multiplication and division.
- I can explain the meaning of the equals sign.
- I can use the equals sign to solve missing number problems
- I can use the equals to express information such $a s ; a(b+c)=a b+a c$
- I can solve problems by multiplication and division.
- I can solve problems including scaling by simple fractions.
- I can solve problems including scaling by simple rates.
- I can compare fractions whose denominators are all multiples of the same number
- I can order fractions whose denominators are all multiples of the same number.
- I can identify equivalent fractions of a given fraction (including tenths and hundredths) represented visually.
- I can write equivalent fractions of a given fraction (including tenths and hundredths) represented visually.
- I can recognise mixed numbers.
- I can recognise improper fractions
- I can convert an improper fraction to a mixed number and vice versa
- I can write statements involving mixed numbers in a calculation with the same denominator.
- I can add fractions with the same denominator
- I can subtract fractions with the same denominator
- I can add fractions with the same multiple
- to solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- to solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
- to compare and order fractions whose denominators are all multiples of the
- to identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- to recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements $>1$ as a mixed number (e.g. $2 / 5+4 / 5=6 / 5=11 / 5$ )
- to add and subtract fractions with the same denominator and multiples of the same number


## Mathematics - Medium Term Plan



- to multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.
- to read and write decimal numbers as fractions (e.g. $0.71=71 / 100$ )
- to recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- to round decimals with two decimal places to the nearest whole number and to one decimal place
- to read, write, order and compare numbers with up to three decimal places
- to solve problems involving number up to three decimal places.
- to recognise the per cent symbol (\%) and understand that per cent relates to number of parts per hundred, and write percentages as a fraction with denominator hundred, and as a decimal fraction
- to solve problems which require knowing percentage and decimal equivalents of ${ }^{1} / 2^{\prime}{ }^{1} /_{4^{\prime}}{ }^{1} / 5^{\prime}{ }^{2} / /_{5^{\prime}}{ }^{4} /{ }_{5}$ and those with a denominator of a multiple of 10 or 25 .
- to convert between different units of measure (e.g. kilometre and metre; metre and centimetre; centimetre and millimetre; kilogram and gram; litre and millilitre)
- to understand and use equivalences between metric and common imperial units such as inches, pounds and pints
- to measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
- to calculate and compare the area of squares and rectangles including usin standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes
- to estimate volume (e.g. using 1 cm 3 blocks to build cubes and cuboids) and capacity (e.g. using water)
- to solve problems involving converting between units of time
- to use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling
- I can subtract fractions with the same multiple
- I can add and subtract fractions through a variety of increasingly complex problems. (nsg)
- I can count forward and backward in simple fractions (nsg)
- I can multiply proper fractions by whole numbers, supported by materials and diagrams
- I can multiply mixed numbers by whole numbers, supported by materials and diagrams
- I can find the fraction of a number by multiplying (e.g. $3 / 4$ of 24 ) (nsg)
- I can recognise fractions in real life situations and different contexts.(nsg)
- I can read decimal numbers as fractions
- I can write decimal numbers as fractions
- I can convert decimal numbers to fractions and vice versa, including problem solving including measures. (nsg)
- I can recognise and use thousandths and relate them to tenths
- I can recognise and use thousandths and relate them to hundredths and
- I can recognise and use thousandths and relate them to decimal equivalents
- I can round decimals with two decimal places to the nearest whole number
- I can round decimals with two decimal places to the nearest whole number and to one decimal place
- I can read numbers with up to three decimal places
- I can write numbers with up to three decimal places
- I can order and compare numbers with up to three decimal places
- I can solve problems involving number up to three decimal places
- I can recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred
- I can write percentages as a fraction with denominator hundred, and as a decimal fraction
- I can solve problems which require knowing percentage and decimal equivalents of $1 / 2^{\prime},{ }^{1} / 4^{\prime}{ }_{5^{\prime}}{ }^{2} /_{5^{\prime}}{ }^{4} /{ }_{5}$
- I can solve problems with a denominator of a multiple of 10 or 25
- I know the relationships between different metric units of measure eg. cm and $\mathrm{m}, \mathrm{m}$ and $\mathrm{km}, \mathrm{cm}$ and $\mathrm{mm}, \mathrm{g}$ and $\mathrm{Kg}, \mathrm{L}$ and ml etc.
- I can use place value and relationships to convert between units of measure eg. $5 \mathrm{~m}=500 \mathrm{~cm}, 7 \mathrm{~m}=7000 \mathrm{~mm}, 1.2 \mathrm{~L}=1200 \mathrm{ml}$, $1 / 4 \mathrm{~m}=0.25 \mathrm{~m}=25 \mathrm{~cm}, 7 \mathrm{~m}=0.007 \mathrm{~km}$ etc.
- I know equivalences between metric and imperial units of length. $\mathrm{Eg} . \mathrm{cm}$ and metres with inches and feet; and between km and miles.
- I know equivalences between metric and imperial units of mass. Eg. between pounds (lbs) and Kg .
- I know equivalences between metric and imperial units of volume and capacity. Eg. pints with litres and $\mathrm{cm}^{3}$.
- I know that the perimeter of rectangles is $21+2 \mathrm{w}$.
- I can measure lengths in cm and m to work out perimeters of shapes including squares, rectangles, $T$ and L shapes etc.),
- I can calculate the perimeter in cm and m of shapes with given lengths including squares, rectangles, $T$ and $L$ shapes etc., including those with some unlabelled sides.
- I can find the unlabelled length of a rectangle, given its area and the length of one side.
- I can find the unlabelled length of a rectangle, given its perimeter and the length of one side.
- I can find the unlabelled length of a rectangle, using the algebraic formula for perimeter (eg. $4+2 w=20$ ).
- I can calculate the perimeter of a rectangle (including squares), given its area and the length of one side.
- I know that the area of a rectangle is length $x$ width.
- I know area is measured using standard squares ( $\left(\mathrm{eg} . \mathrm{cm}^{2}, \mathrm{~m}^{2}\right.$ ).
- I can calculate the area of a rectangle given the length and width
- I can compare by estimation the area of different rectangles (including squares)
- I can estimate the area of irregular shapes.
- I understand the meaning of volume/capacity.
- I can estimate how many $1 \mathrm{~cm}^{3}$ blocks are needed to build a cuboid of given dimensions.
- I can estimate the volume/capacity of a container using a 'standard' to compare against (eg. a 2L bottle).
- I understand relationships between different units of time (eg. sec, min, hours and days.)
- I can convert between different measures of time
- I can use all four operations to solve single and multi-step problems involving time.
- I can convert between units of measures when solving multi-step problems.
- I can use all four operations and scaling to solve single and multi-step problems using decimal notation for length


## Mathematics - Medium Term Plan




- Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- to use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- to compare and order fractions, including fractions >1
- to add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- to multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. $1 / 4 \times 1 / 2=1 / 8$ )
- to divide proper fractions by whole numbers (e.g. $1 / 3 \div 2=1 / 6$ ).
- to associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $1 / 8$ )
- to identify the value of each digit to three decimal places and multiply and divide identify the value of each digit to three decimal places and multiply and divide
numbers by 10,100 and 1000 where the answers are up to three decimal places
- to multiply one-digit numbers with up to two decimal places by whole numbers
- to use written division methods in cases where the answer has up to two decimal places
- to solve problems which require answers to be rounded to specified degrees of accuracy.
- to recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
- to solve problems involving the relative sizes of two quantities where missing values can be found using integer multiplication and division facts
- to solve problems involving the calculation of percentages of whole numbers or measures such as $15 \%$ of 360 and the use of percentages for comparison
- to solve problems involving similar shapes where the scale factor is known or can be found
- to solve problems involving unequal sharing and grouping using knowledge of fractions and multiples
- to enumerate all possibilities of combinations of two variables
- to solve problems involving the calculation and conversion of units of measure, using decimal notation to three decimal places where appropriate
- to use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to three decimal places
- to convert between miles and kilometres
- to recognise that shapes with the same areas can have different perimeters and vice versa
- to recognize when it is possible to use formulae for area and volume of shapes
- to calculate the area of parallelograms and triangles
- to calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$ and
- I can divide numbers up to 4 digits by a two-digit number using the formal written method of short division
- I can, where appropriate, interpret remainders according to the context
- I can use common factors to simplify fractions
- I can use common multiples to express fractions in the same denomination
- I can compare and order fractions
- I can add and subtract fractions with different denominators
- I can add and subtract fractions with mixed numbers
- I can multiply simple pairs of proper fractions
- I can reduce my answer to the simplest form
- I can divide proper fractions by whole numbers
- I associate a fraction with division
- I can calculate decimal fraction equivalents
- I can identify the value of each digit to three decimal places
- I can multiply and divide numbers by 10 where the answers are up to three decimal places
- I can multiply and divide numbers by 100 where the answers are up to three decimal places
- I can multiply and divide numbers by 1000 where the answers are up to three decimal places
- I can multiply one-digit numbers with up to two decimal places by whole numbers
- I can use written division methods in cases where the answer has up to two decimal places
- I can solve problems which require answers to be rounded to specified degrees of accuracy
- I can recall equivalences between simple fractions, decimals and percentages
- I can use equivalences between simple fractions, decimals and percentages
- I can solve problems using integer multiplication and division facts
- I can solve problems involving the calculation of percentages of whole numbers
- I can solve problems involving the calculation of percentages of measures
- I can use of percentages for comparison
- I can solve problems involving similar shapes where the scale factor is known
- I can solve problems involving similar shapes where the scale factor can be found
- I can solve problems involving unequal sharing
- I can solve problems involving grouping
- I can find all the possibilities when using symbols for numbers I don't know yet e.g. using x and y
- I can solve multi-step problems involving conversion between units of measure (with numbers up to 3dp).
- I can perform calculations for temperature, involving negative numbers, with the help of a number line.
- I can use place value and relationships to convert between units of measures, up to 3 dp eg. $502.1 \mathrm{~cm}=5.021 \mathrm{~m}$ $2 \mathrm{~mm}=0.002 \mathrm{~m}, 250 \mathrm{ml}=0.25 \mathrm{~L}=1 / 4 \mathrm{~L}, 2547 \mathrm{~m}=2.547 \mathrm{~km}$ etc.
- I understand that speed can be measured eg. in metres-per-second, km-per-hour, miles-per-hour etc., and I can explain what it means.
- I know that 8 km is roughly equivalent to 5 miles, and I can use this to estimate/compare/check.
- I can convert between miles and kilometres.
- I understand line-graphs and map scales showing the equivalence between miles and km
- I can find polygons that have the same perimeter, but different rectangles.
- I can find polygons that have the same area, but a different perimeter.
- I can apply known area formulae when challenged with calculating the area/volume of more complex shapes (eg. by dissecting a complex shape into smaller shapes).
- I know the area of a parallelogram (base x height).
- I know that the area of a triangle is $1 / 2($ base $x$ height).
- I can calculate the area of parallelograms and triangles, with a given base and height measurement, using formulae.
- I know that volume can be measured using cubes.
- I know the formula for volume of cubes and cuboids (length x width x height).


|  |  | - to enumerate possibilities of combinations of two variables. | - I can establish the number of possibilities derived from combinations of two variables. <br> - I can use symbols and letters to represent missing numbers in a number sentence. <br> - I can use symbols and letters to represent missing numbers in the context of length <br> - I can use symbols and letters to represent missing numbers in the context of co-ordinates. <br> - I can use symbols and letters to represent missing numbers in the context of angles. <br> - I can use formulae in science. <br> - I can use equivalent expressions <br> - I can generalise number patterns (for example, find the nth value) <br> - I can use algebra to solve numbers puzzles |
| :---: | :---: | :---: | :---: |

## Mathematics - Medium Term Plan

These are the strategies that need to be taught for problem solving and they are generic to each year group, differentiated by the context of the mathematics and the age/stage of the pupils.


## Mathematics - Medium Term Plan

|  | I can test a prediction |
| :---: | :---: |
| Work backwards | I can work backwards through a problem to check my results |
| Use trial and improvement | I can use trial and improvement to arrive at a sensible conclusion |
|  | All of these can be further differentiated by: I can do this with an adult I can do this with a friend or peer I can do this by myself |

## Logic problems and puzzles

When solving logic problems and puzzles, the strategies children need to be able to draw on include

- Identifying carefully what is known and what needs to be found and thinking about how they might relate;
- Looking through the information that is given for any relationships or patterns that can be developed and used;
- Developing a line of thinking that involves making inferences and deductions, for example 'if I know that then this could or must be true', and testing these out against the given information;
- Taking one piece of the information and changing it, while keeping everything else fixed, to see what effect it has on the problem;
- Choosing a way of recording and organising the given information that helps to see how the problem is structured;
- Checking answers along the way to see if they satisfy the conditions or rules.
- I can say what I know and what needs to be found out
- I can tell you what connections I can see
- I can tell you what relationships I can see
- I can tell what patterns I can see
- I can tell you how I will use the pattern to solve my puzzle
- I can use information that I know to find things I don't know
- I can test my answers to see if I am right
- I can use the information I have to test my theory
- I can change just one piece of information and see what happens to the problem
- I can choose a way of recording the information
- I can organise my information so that it helps me solve the puzzle
- I can remember to check all the time that I am following the rules


## Finding rules and describing pattern

When solving 'Patterns and relationships' problems, the strategies children need to be able to draw on include: - oral rehearsal of the pattern they can see to refine their thoughts

- having a system for recording the pattern e.g. using pictures, tables or lists of calculations
- organising the recording of patterns, e.g. making an ordered list or table and adapting it as more information is collected in order to predict what comes next
- eventually, describing same general term using mathematical notation even if they see the sequence differently
- I can practise saying the patter to help me sort out my thinking
- I can make a list to show my pattern
- I can use pictures to show my patterns
- I can use calculations to show my pattern
- I can make an ordered list to help me predict what comes next
- I can make a table to help me predict what comes next
- I can change my lists and tables when I need to
- I can use mathematical language to describe my patterns
- I can explain my findings using mathematical language


## Finding all possibilities

When solving 'Finding all possibilities' problems, the strategies children need to be able to draw on include:

- having a system for testing possibilities, e.g. start with a small number and build up to bigger numbers
- organising the recording of possibilities, e.g. make an ordered list or table and adapt it as more information is collected
- I start with small numbers to help me be systematic

I can make an ordered list to help me predict what comes next

- I can make a table to help me predict what comes next
- I can change my lists and tables when I need to

| - using a method of tracking what has been included and what has not to isolate relevant information | - I can sort through the information to see what is important <br> - I can tell you what other information I need |
| :---: | :---: |
| - having a way of checking for any repeats and deciding when all possibilities have been found. | - I can choose a way of recording all the possibilities so that I can check for repeats <br> - I can decide when I think all the possibilities have been found and explain why. |

