Southwold Primary \& Nursery School
"Be all you can be and together we will shine"

Calculation Policy September 2023

Subitise
Using a dic
Using a dice or Numicon
$\bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet:!$

equals (=) signs It is important to that children have a clear understanding of the concept of equality, before using the ' $=$ ' sign. Calculations should be on either side of the' to that children don't misunderstand ' $=$ ' as to mean 'the answer' $15+2=17$ $15=3+12$		make connections between arrays and number patternsArraysArrays and repeated addition3 groups of 2 $2+2$or $2+2+2+2$	
solve one-step problems that involve addition and subtraction, using concrete []+4 To support this, when solving calculations, missing numbers should be placed in all possible places: $3+4=r$ $3+r=7$ $4+r=7$ $r+\nabla=7$ Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method \square	solve one-step problems that involve addition and subtraction, using concrete object []- 9 To support this, when solving calculations, missing numbers should be placed in ll possible places $\begin{aligned} & 16-9=r \\ & 16-r=7 \end{aligned}$ $\begin{aligned} & r=16-9 \\ & 7=r-9 \end{aligned}$ $\begin{aligned} & r-9=7 \\ & r-\nabla=7 \end{aligned}$ $\begin{aligned} & 7=16-r \\ & 7=r-\nabla \end{aligned}$ Use and why Singapore Bar Method \square	solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method
larger quantity smaller quantity difference smaller quantity + difference $=$ larger quantity	larger quantity smaller quantity difference larger quantity - smaller quantity $=$ difference		
understand and use vocabulary for addition, e.g. put together, add, altogether, +, add, more, plus, make, total, altogether, score, double, near double, one more two more... ten more. = equals, sign, is the same as How many more to make...? How many more is... than...? How much more is...? Repetition of facts with different vocabulary: "What is 2 plus 5?" What is the total of 2 and 5 ?" etc		use a variety of language to describe multiplication count on (from, to), count back (from, to), count in ones, twos, threes, fours fives... count in tens, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve equals, sign, is the same as	use a variety of language to describe division Array, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes... tens, equal groups of \div divide, divided by, divided into, left, left over = equals, sign, is the same as
Part-part whole model Used as a representation for adding and subtracting. Children can find commutative. 20 bead string These are used to support their understanding of numbers up to 10 counting forwards and backwards in Reception. These are used to reinforce their counting forwards and backwards up to 20.	Tens frame For one more or one fewer 2 frames to move across Children can add or remove counters and can be used for Addition and Subtraction. I know that ... $=$ 'If ...-... $=.$. then I know that ...-... $=$.		
Subitise Using a dice or Numicon to understand the	Numicon Used to support their number bonds to 10,20 and so on.$\quad 8888189888$		

Part-part whole model Used as a representation for adding and subtracting. Children can find commutative. Numicon Used to support number bonds up to 100. Used to look at commutative.	Tens frame For one more or one fewer 2 frames to move across Children can add or remove counters and can be used for Addition and Subtraction. I know that + = 'If ...-... $=\ldots$ then I know that ...-... $=$..		
		solve problems involving multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	solve problems involving division, using materials, repeated addition mental methods, and division facts, including problems in contexts Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method
recognise and use the inverse relationship between addition and subtraction andMissing numbers placed in all possible places. Number $7-3=\square$ $\square=4+3$ $7+4=11$ $7-\square=4$ $7=\square+3$ 7 $\square-3=4$ $7=4+\square$ 7 $\square-\nabla=4$ $7=\square+\nabla$		recognise and use the inverse relationship between multiplication and division and $\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \end{aligned}$	use this tosolve missing number problens $15 \div 3=5$ $15 \div 5=3$
show that addition of two numbers can be done in any order (commutative) On a number line On a hundred square			show that division of one number by another cannot be done in any order
check their calculations, including adding numbers in a different order to check addition (for example, $5+2+1=1+5+2=1+2+5$) - establishing commutativity and associativity of addition See models and images above.	check their calculations, including by adding to check subtraction See models and images above		
recognise and use the inverse relationship between addition and subtraction and use this to check calculation See models and images above.	recognise and use the inverse relationship between addition and subtraction and use this to check calculations See models and images above	use commutativity and inverse relations to develop multiplicative reasoning (for e Arrays - related facts $3 \times 5=15$ $5 \times 3=15$	
extend their understanding of the language of addition to include sum +, add, more, plus, make, sum, total, altogether, score, double, near double, one nore, two more... ten more, How many more to make...? How many more is... than...? How much more is...? Repetition of facts with different vocabulary "What is 2 add 5 ?" "What is 2 more than 5 ?" "What is 2 plus 5?" What is the total of 2 and 5 ?" etc = equals, sign, is the same as	extend their understanding of the language of subtraction to include difference - subtract, subtraction, take (away), minus, leave, how many are left/left over? much less is...? difference between, half, halve, tens boundary $+5=8$ Repetition of sentence with different vocabulary: $13+5=8$ Repetition of sentence with different" 13 subtract 5 equals 8 " " 5 less than 13 is 8 "13 take away 5 equals 8 " "The difference between 13 and 5 is 8 " etc = equals, sign, is the same as	use a variety of language to describe multiplication count on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve = equals, sign, is the same as	
Year 3			
add numbers mentally, including: Number - addition a three-digit number and ones athree-edifit numberanant tens a three-digit number and hundreds	n and subtraction subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds	Number - multipl recall and use multiplication facts for the 3,4 and 8 multiplication tables Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Investigate patterns within tables.	cation and division recall and use division facts for the 3,4 and 8 multiplication tables Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Investigate patterns within tables.

estimate the answer to a calculation and use inverse operations to check answers Estimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking.	estimate the answer to a calculation and use inverse operations to check answers Estimate answers before solving any calculation Once inverse operation has been learnt use as a method for checking.	write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods See models and images above.	write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods See models and images above
use a variety of langunge to describe addition	usea variety of lanuage to describib s sutraction	use a variety of languge to doscribe mutitipication	use a variety of languge to describibe division
+, add, addition, more, plus, make, sum, total, altogether, score, double, near double, one more, two more... ten more... one hundred more, how many more to make...? how many more is... than.... how much more is...? = equals, sign, is the same as tens boundary, hundreds boundary	- subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less... ten less... one hundred less, how many fewer is... than...? how much less is...? difference between, half, halve = equals, sign, is the same as	count, count (up) to, count on (from, to), count back (from, to), count in ones, wos, threes, fours, fives... count in tens, hundreds, lots of, groups of, D, times multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times...times as (big, long, wide... and so on), repeated addition, array, row, column = equals, sign, is the same as	Array, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, division, divided by, divided into, left, left over, remainder equals, sign, is the same as

Year 5			
Number - addition and subtraction		Number - multiplication and division	
add numbers mentally with incresesingly large unubers (e.g. 12 2462 - 2300 10162)Parrition both numbers and recombine$2358+773$ $=2000+300+50+8+700+70+3$ $=2000+100+12+11$ $=3000+100+30+1$	subtract numbers mentally with increasingly large numbers (e.g. 12462 - 2300 $=10162$) Subtract the nearest multiple of 10 or 100, then adjust $\begin{aligned} 458-79 & =458-80+1 \\ & =378+1 \\ & =379 \end{aligned}$	multiply numbers mentally drawing upon known facts Partition $\begin{aligned} 47 \times 6 & =(40 \times 6)+(7 \times 6) \\ & =(240)+(42) \end{aligned}$ $=282$ Double and halve $25 \times 16=50 \times 8=100 \times 4=200 \times 2=400$	divide numbers mentally drawing upon known facts Partitioning $\begin{aligned} 72 \div 3 & =(60 \div 3)=(12 \div 3) \\ & =20+4 \\ & =24 \end{aligned}$
	Find a difference by counting up	multiply whole numbers and those involving decimals by 10,100 and 1000 Place Value 确	divide whole numbers and those involving decimals by 10,100 and 1000 Place Value 万 $\div 1000$
		identify multiples, (and use them to construct equivalence statements, e.g. $4 \times$ $35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10$) Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.	
		recall prime numbers up to 19 establish whether a number up to 100 is prime	recall prime numbers up to 19 establish whether a number up to 100 is prime

Partition second number only into hundreds, tens and ones and recombine	Use known number facts and	More models send imgess to tisploly facts.	
$2358+773$ $=2358+700+70+3$ $=3558+70+3$ $=3128+3$		recognise and use square numbers and cube numbers, and the notation for display facts. \qquad \square	
add numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) Column addition $\begin{aligned} & 124.90 \text { (add in a zero to keep } \\ & \text { the place value) } \\ &+\frac{117.25}{242.15} \end{aligned}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently. Discuss the value of each digit. Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value. Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value. Children should be made aware that it is essential to align the columns carefully.	Revision of formal compact column understanding of When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place holders', if needed. - $5 /$ Ux. $1 \quad$ Use Diennes or place value - 263.0 $\begin{array}{l}\text { counters (add counters with 0.1) to } \\ \text { support understanding of } \\ \text { decomposition and place value. }\end{array}$ 236.5	multiply numbers up to 4 digits by a one- or two-digit number using a formal Review formal method of short multiplication (for multiplying by one digit numbers) when proficient $\begin{array}{r} 452 \\ \times \quad 3 \\ \hline 1356 \\ \hline \end{array}$ $\begin{array}{r} 1243 \\ \times \quad 8 \\ \hline 9624 \\ \hline \end{array}$ Start with grid method when multiplying by 2 digit numbers 72×38 is approximately $70 \times 40=2800$ Move onto formal long multiplication Then formal multiplication with more complex numbers:34 $\times 102$ 1234 $\times 102$ $\div 346$ 340 $\frac{12404}{19,744}$	divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the 24 r2 $24 \frac{1}{2}=24.5 \approx 25$)) Introduce long division (dividing by single digits) $256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$ $\begin{array}{rll} 256 & \\ -\frac{70}{186} & \text { (10 groups) } & \text { or }(10 \times 7) \\ \frac{140}{46} & \text { (20 groups) } & \text { or }(20 \times 7) \\ -\frac{42}{4} & \frac{(6 \text { groups })}{} \text { or }(36 \times 7) \\ (36 \text { groups }) \text { or }(36) \end{array}$ Answer: 36 remainder 4
solve addition multi-step methods to use and why Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres \qquad which is most effective and why. Singapore Bar Method use and explain the equals sign to indicate equivalence, including missing number problems (e.9, $13+24=12+25 ; 33=5 \times[]$) express distributivity, for example as $a(b+c)=a b+a c$ \qquad ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point	Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres Use all the models and images mentioned above Singapore Bar Method use and explain the equals sign to indicate equivalence, including missing number problems (e.g, $13+24=12+25 ; 33=5 \times[\mathrm{J})$ Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point.
use rounding to check answe problem, levels of accuracy Estimate answers before solving any calculation Check against estimate after calculating (and use inverse check).	use rounding to check answers to calculations and determine, in the context of a Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Use rumding to check anseres to calculutions send determine, in the context of a Estimate answers before solving any calculation. Check coainste estimate offer cacuudaring (and use inverse check	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
use a variety of language to describe addition + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe multiplication know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers lots of, groups of, times, multiply, multiplication, multiplied by, multiple of product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double,, inverse, prime,	use a variety of language to describe division Array, row, column, halve, share, share equally one each, two each, three each. group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse. Prime, factors equals, sign, is the same as

Year 6			
Number - addition and subtraction		Number - multiplication and division	
perform mental calculations, including with mixed operations and large numbers (and decimals) Partition both numbers into hundreds, tens, ones and decimal fractions and recombine $\begin{aligned} 35.8+7.3 & =30+5+0.8+7+0.3 \\ & =30+12+1.1 \\ & =42+1.1 \\ & =43.1 \end{aligned}$ Partition second number only into hundreds, tens, ones and decimal fractions and recombine $\begin{aligned} 35.8+7.3 & =35.8+7+0.3 \\ & =42.8+0.3 \\ & =43.1 \end{aligned}$	perform mental calculations, including with mixed operations and large numbers(and decimals) Use known number facts and place value to subtract $6.1-2.4=3.7$ Subtract the nearest whole number then adjus \dagger $\begin{aligned} 52-11.9 & =52-12+0.1 \\ & =40+0.1 \\ & =40.1 \end{aligned}$	perform mental calculations, including with mixed operations and large numbers(and decimals) Partitioning $\begin{aligned} 4.7 \times 6 & =(4 \times 6)+(0.7 \times 6) \\ & =(24)+(4.2) \\ & =28.2 \end{aligned}$ Double and halve $\begin{aligned} 4.25 \times 32 & =8.5 \times 16 \\ & =17 \times 8 \\ & =34 \times 4 \\ & =68 \times 2 \\ & =136 \end{aligned}$	perform mental calculations, including with mixed operations and large numbers(and decimals) Partitioning $\begin{aligned} 7.2 \div 3 & =(6 \div 3)=(1.2 \div 3) \\ & =2+0.4 \\ & =2.4 \end{aligned}$
Add the nearest whole number then adjus \dagger $\begin{aligned} 52+11.9 & =52+12-0.1 \\ & =64-0.1 \\ & =63.9 \end{aligned}$		identify common factors, common multiples and prime numbers Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.	Identify common factors, common multiples and prime numbers Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
practise addition for larger numbers, using the formal written methods of columnar addition Extend the use of compact column method to adding several numbers with_mixed decimals. Children should be reminded of the importance of aligning the columns accurately $\begin{array}{r} 23 \cdot 361 \\ 9.080 \\ 59.770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \\ 211 \end{array}$	practise subtraction for larger numbers, using the formal written methods of columnar subtraction Column Subtraction with decomposition Revision of formal compact column method extending to more complex integers and applying to problem solving using money and measures, including decimals with different numbers of decima places. Align the decimal point when setting out calculations Use 'place holders' to aid understanding of the value in that column.	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication Short multiplication and Long multiplication as in Year 5, but apply to numbers with decimals. Pupils may need reminding that single digits belong in the ones (units) column. A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication.	divide numbers up to 4 digits by a two-digit whole number using the formal written method of short and long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context Short division Remainders Quotients expressed as fractions or decimal fractions $61 \div 4=15 \frac{1}{4} \text { or } 15.25$
solve addition multi-step problems in contexts, deciding which operations and methods to use and why Use all the models and images mentioned above. Discuss which is most effective and why	solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why Use all the models and images mentioned above. Discuss which is most effective and why	solve problems involving multiplication Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method	solve problems involving division Use all the models and images mentioned above. Discuss which is most effective and why. Singapore Bar Method

Sing	Singapore Bar Method		
part part larger quantity smaller quantity smaller quantity + difference $=$ larger quantity			
round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, e.g. to the nearest 10, 20,50 etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50 etc., (not to specified number of significant figures) Use knowledge of rounding to create estimates.	round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures Use knowledge of rounding to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.	use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets; for example, $2+1$ $\times 3=5$ and $(2+1) \times 3=9$ Review and investigate the effect of carrying out operations in different orders. Explore the effect. Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary inverse equals, sign, is the same as	use a variety of language to describe subtraction \times lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as big, long, wide... and so on), repeated addition, array, row, column double, inverse = equals, sign, is the same as	use a variety of language to describe subtraction Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient divisible by, inverse = equals, sign, is the same as

