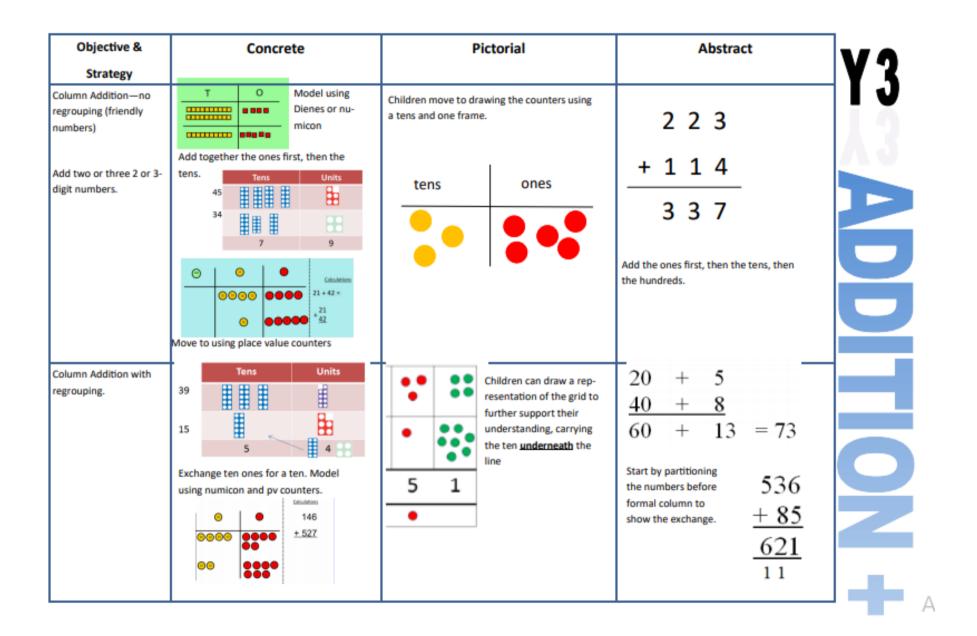
St Andrew's Calculation Policy

Our Vision

At St Andrew's CE Primary School, we aim to bring children to a place where they can realise their full potential. Our Christian values are the foundation of all we do and each one is a facet of the central value, love, which 'always protects, always trusts, always hopes, always perseveres.' (1 Corinthians 13:7)

This Policy reflects St. Andrew's Church of England Primary School's Christian ethos and mission statement. It was written with our Christian values of Creativity and Wisdom in mind

Seb Hearmon – Chair of Governors Signed:


Dated: March 2020

Review Fate: March 2023

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	3 part part 2 2 2 2 2 2 2 2 2 2 2 2 2	4 + 3 = 7 5 3 Use the part-part whole diagram as shown above to move into the abstract.
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller num- ber 1 by 1 to find the answer.	12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	6 + 5 = 11	3 + 9 = Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9 + 5 = 14$	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent & use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'

Objective &	Concrete	Pictorial	Abstract
Strategy			
Adding multiples of	50= 30 = 20		20 + 30 = 50
en	11111		70 = 50 + 20
		3 tens + 5 tens = tens 30 + 50 =	40 + 🗆 = 60
	Model using dienes and bead strings	Use representations for base ten.	
Jse known number	Children ex-		+ 1 = 16 16 - 1 =
acts	plore ways of making num-		1+=16 16-=1
Part part whole	bers within 20	+ = 20 20 - =	
	100 C	+ = 20 20 - =	
Jsing known facts		$\nabla (1 + \frac{1}{2}) = \frac{1}{2}$	3 + 4 = 7
	<u>nan Nan Nna</u> N n	(+) =	leads to
			30 + 40 = 70
		• • •	leads to
		Children draw representations of H,T and O	300 + 400 = 700
Bar model		******	23 25
	_	3999999 9 9 9	?
	3 + 4 = 7	7 + 3 = 10	22 + 25 - 49
			23 + 25 = 48

Objective & Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 3 (2) 16 + 7 16 + 7 16 + 20 (2) 16 + 20 (2)	17 + 5 = 22 Explore related facts 17 + 5 = 22 5 + 17 = 22 22-17 = 5 22-5 = 17 17 5
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	27 + 30 +10 +10 +10 	27 + 10 = 37 27 + 20 = 47 27 + □ = 57
Add two 2-digit numbers	Model using dienes , place value counters and numicon	+20 +8 Or +20 +3 +2 47 67 72 47 67 70 $72Use number line and bridge ten using partwhole if necessary.$	25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation.	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/bridge ten then add on the third.

Objective &	Concrete	Pictorial	Abstract	VAC
Strategy Y4—add numbers with up to 4 digits	Children continue to use dienes or pv counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand. Hundreds Tens Ones Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" <t< th=""><th>7 1 5 1 • • • • Draw representations using pv grid. • •</th><th>3 5 1 7 + 3 9 6 3 9 1 3 Continue from previous work to carry hundreds as well as tens. Relate to money and measures.</th><th></th></t<>	7 1 5 1 • • • • Draw representations using pv grid. • •	3 5 1 7 + 3 9 6 3 9 1 3 Continue from previous work to carry hundreds as well as tens. Relate to money and measures.	
Y5—add numbers with more than 4 digits. Add decimals with 2 dec- imal places, including money.	As year 4 tens ones tenths hundredth hundr	2.37 + 81.79 tens ones tents hundred #5 00 0000 0 00000 00 000000 00 000000 00 00000 00 000000 00 00000 00 000000 00 000000 00 000000 00 000000 00 0000000 00 00000000	72.8 ± 54.6 127.4 1 1 $\notin 2 3 \cdot 59$ $\pm 4 7 \cdot 55$ $\notin 3 \cdot 4$	
Y6—add several num- bers of increasing com- plexity Including adding money, measure and decimals with different numbers of decimal points.	As Y5	As Y5	$\begin{array}{c} 8 & 1, 0 & 5 & 9 \\ 3, 6 & 6 & 8 \\ 1 & 5, 3 & 0 & 1 \\ + & 2 & 0, 5 & 5 & 1 \\ 1 & 2 & 0, 5 & 7 & 9 \\ 1 & 1 & 1 & 1 \\ \end{array}$ Insert zeros for place holders. $\begin{array}{c} 2 & 3 & 3 & 6 & 1 \\ 9 & 0 & 8 & 0 \\ 5 & 9 & 7 & 7 & 0 \\ + & 1 & 3 & 0 & 0 \\ 2 & 1 & 2 & 1 \end{array}$	N

.

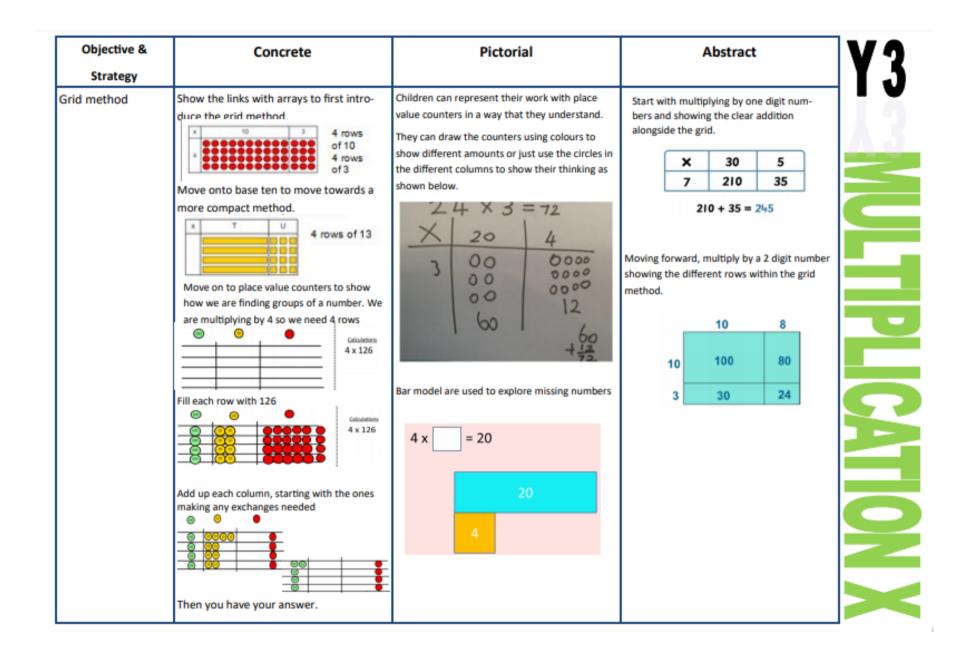
Objective & Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters , cubes etc to show how objects can be taken away. 6-4 = 2		7—4 = 3
	4-2=2	15 - 3 = 12 Cross out drawn objects to show what has been taken away.	16—9 = 7
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?
Find the Difference	Compare objects and amounts 7 'Seven is 3 more than four' 4 'I am 2 years older than my sister'	Count on using a number line to find the difference.	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.?
	3 traises P Lay objects to represent bar model.		

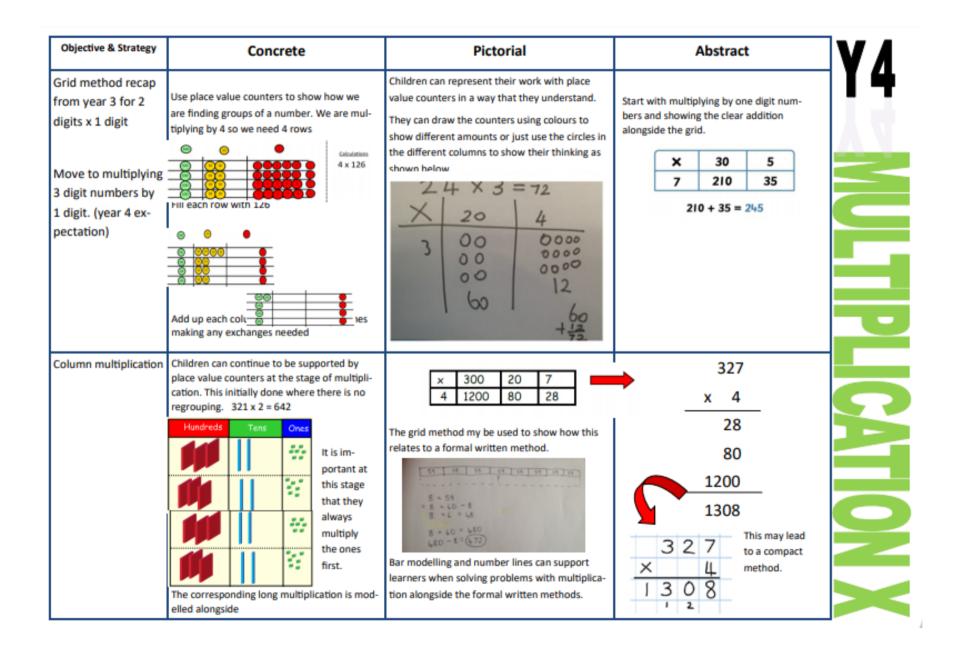
Objective & Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? 10-6 = 4	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	14—9	13-7 13-7 = 6 Jump back 3 first, then another 4. Use ten as the stopping point.	16—8 How many do we take off first to get to 10? How many left to take off?
Bar model	5−2 = 3		8 2 10 = 8 + 2 10 = 2 + 8 10-2 = 8 10-8 = 2

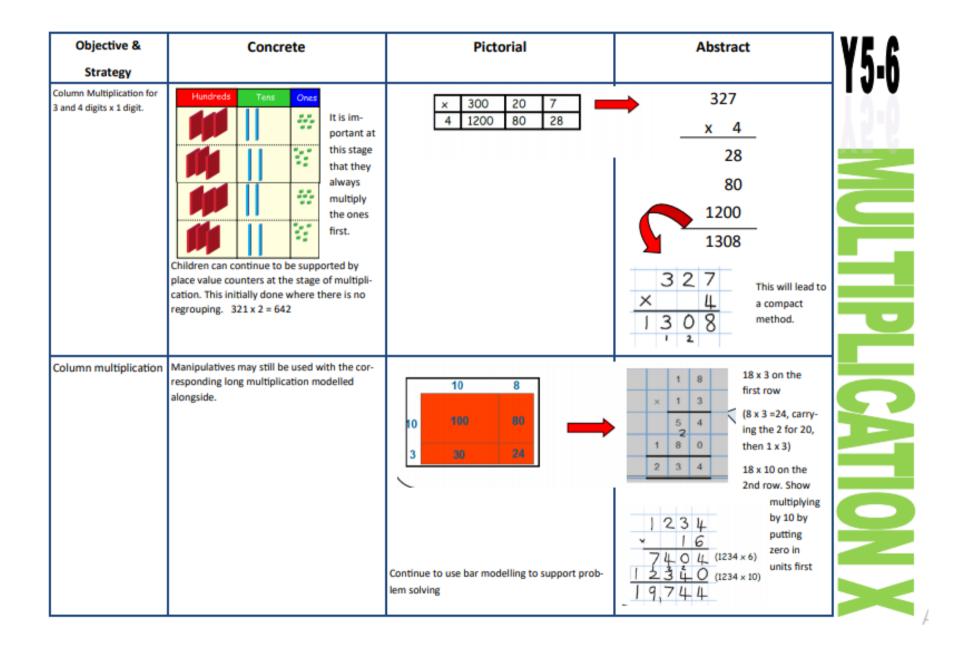
Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	00000 000000 20 - 4 =	20—4 = 16
Partitioning to sub- tract without re- grouping. 'Friendly numbers'	34-13 = 21	Children draw representations of Dienes and cross off. $ \begin{array}{c} $	43-21 = 22
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross- ing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	76 80 90 93 'counting on' to find 'difference' Use a number line to count on to next ten and then the rest.	93—76 = 17

Objective &	Concrete	Pictorial	Abstract	1/0
Strategy				Y X
Column subtraction without regrouping (friendly numbers)	47—32 Use base 10 or Numicon to model	Darw representations to support under- standing	$47-24 = 23$ $-\frac{40}{20} + \frac{7}{4}$ Intermediate step may be needed to lead to clear subtraction under- standing. 32 -12 20	S
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	45 29 Tens 10 nes 16 90 90 90 9010 90 90 9010 10 90 9010 10 10 1010 10 10 $10Children may draw base ten or PV countersand cross off.$	$\begin{array}{r} 8 36 - 254 = 582 \\ \hline 8 0 0 130 6 \\ - 200 50 4 \\ \hline 500 80 2 \end{array}$ Begin by partitioning into pv columns $\begin{array}{r} 7 28 - 582 = 146 \\ \hline 6 7 2 8 \\ \hline 5 8 2 \\ \hline 1 4 6 \end{array}$ Then move to formal method.	BTRACI

L

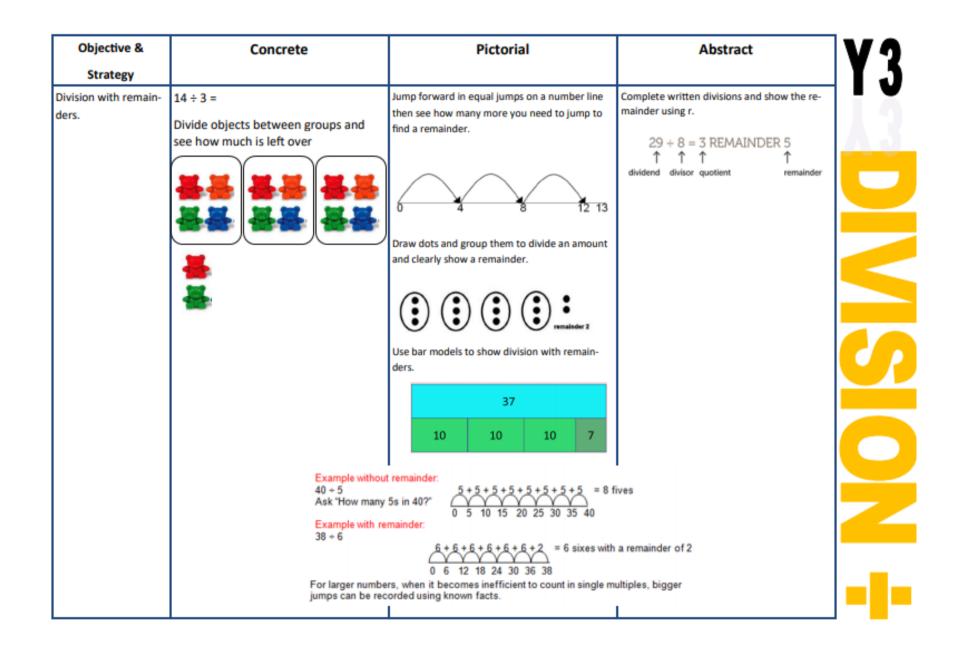

Objective &	Concrete	Pictorial	Abstract	
Strategy				Y 4.K
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtrac- tion through context of money	234 - 179	Children to draw pv counters and show their exchange—see Y3	2 x 5 4 - 1 5 6 2 1 1 9 2 Use the phrase 'take and make' for ex- change	
Year 5- Subtract with at least 4 dig- its, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As Year 4	Children to draw pv counters and show their exchange—see Y3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRAC
Year 6—Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{c} 3780,699\\ - 89,949\\ - 60,750\\ - 36080\\ - 36080\\ - 36980\\ - 3980\\ - 9080$	

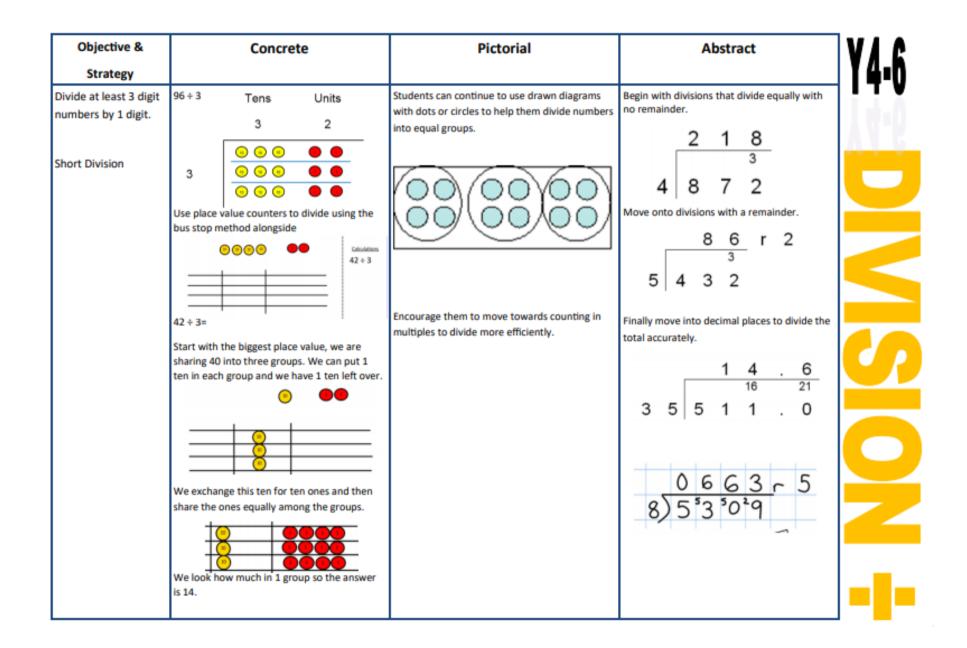

Objective &	Concrete	Pictorial	Abstract
Strategy Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling $\downarrow \downarrow $	Draw pictures to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10 10 10 10 10 10 12
Counting in multi- ples	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting.	Children make representations to show counting in multiples. $\frac{2}{9} \underbrace{2}_{4} \underbrace{2}_{6} \underbrace{2}_{8} \underbrace{2}_{10} \underbrace{2}_{12} \underbrace{2}_{14} \underbrace{2}_{16} \underbrace{2}_{10} \underbrace{2}_{1$	Count in multiples of a number aloud. Write sequences with multiples of num- bers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show 2 x 3 = 6 Draw and make representations	2 x 4 = 8

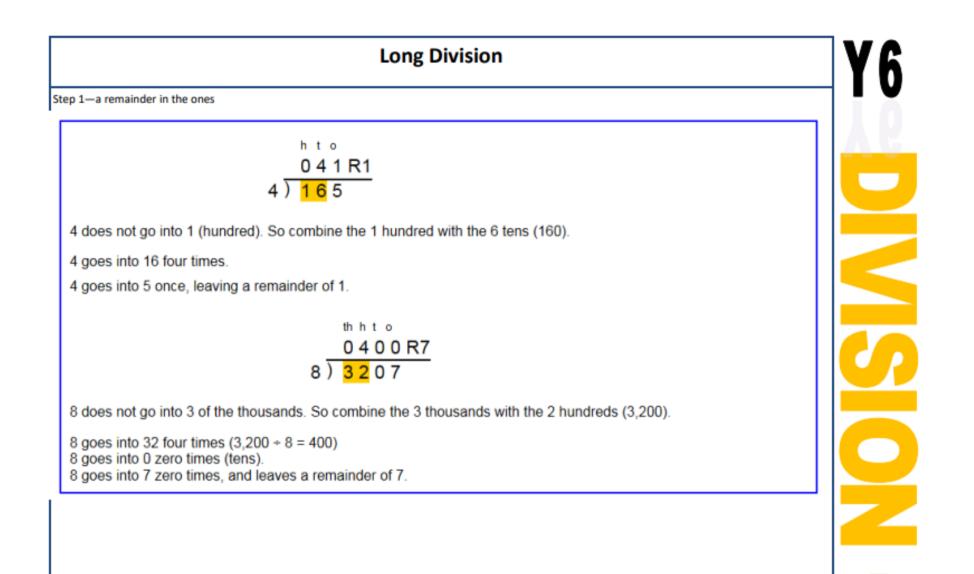

Objective &	Concrete	Pictorial	Abstract
Strategy Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15 0 0 0 0 0 0 0 0 0 0 0 0 0	Write addition sentences to describe objects and pictures. $\underbrace{2 + 2 + 2 + 2 = 10}$
Understanding ar- rays	Use objects laid out in arrays to find the an- swers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show under- standing	3 x 2 = 6 2 x 5 = 10

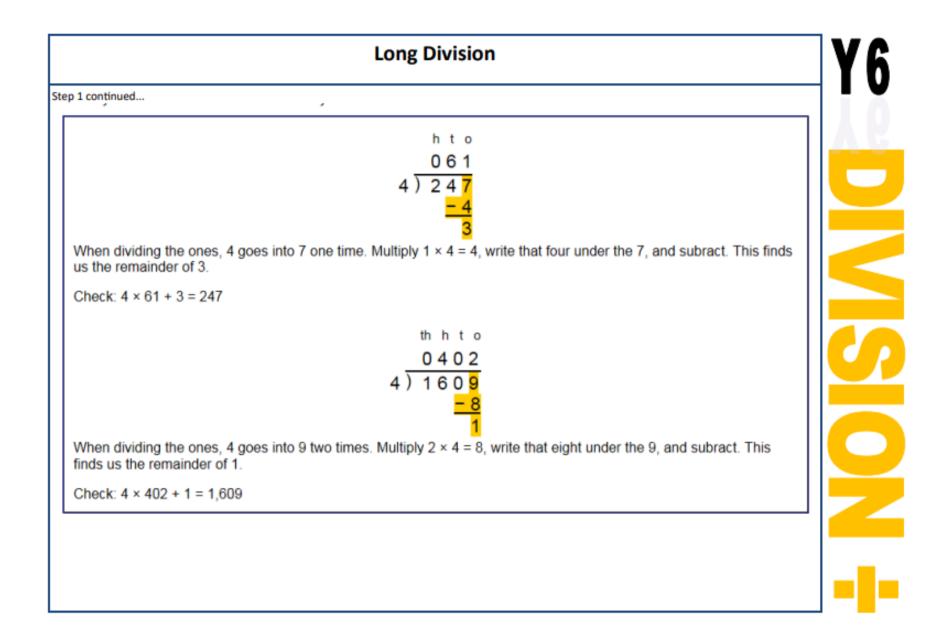
Objective &	Concrete	Pictorial	Abstract	V
Strategy				T
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10	
Counting in multi- ples of 2, 3, 4, 5, 10	Count the groups as children are skip counting, children may use their fin-	Number lines, counting sticks and bar models should be used to show repre-	Count in multiples of a number aloud.	
from 0 (repeated addition)	gers as they are skip counting. Use bar models.	sentation of counting in multiples.	Write sequences with multiples of numbers.	C
	5 + 5 + 5 + 5 + 5 + 5 + 5 = 40		0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15	
			0, 5, 10, 15, 20, 25 , 30	
	111 111 111 ?	3 3 3 3 ?	4 × 3 =	

Objective &	Concrete	Pictorial	Abstract	V)
Strategy				1 4
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	12 = 3×4 12 = 4×3 Use an array to write multiplication sentences and reinforce repeated addition. 0 0 0 0 0 0 0 0	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.		$\begin{vmatrix} 4 & 2 \\ \hline 4 & 2 \\ \hline \times \\ \hline \times \\ \hline \\ \times \\ \hline \\ \div \\ \hline \\ \vdots \\ \hline \\ \div \\ \hline \\ = \\ \hline \end{vmatrix}$	2 x 4 = 8 4 x 2 = 8 8 ÷ 2 = 4 8 ÷ 4 = 2 8 = 2 x 4 8 = 4 x 2 2 = 8 ÷ 4 4 = 8÷ 2 Show all 8 related fact family sentences.	CATION X

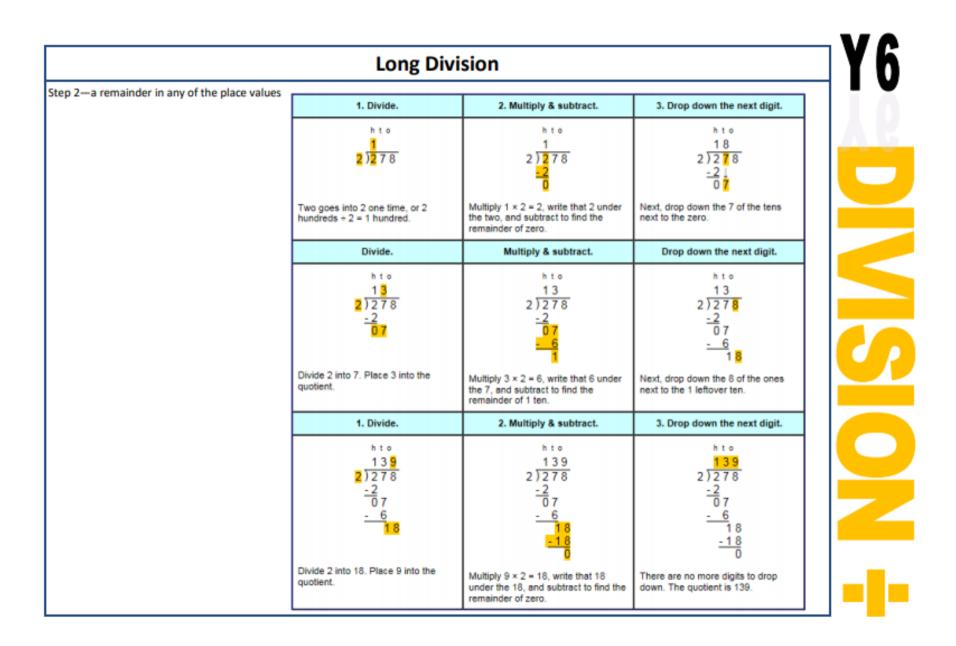



Objective &	Concrete	Pictorial	Abstract
Strategy			
Multiplying decimals			Remind children that the single digit belongs
up to 2 decimal plac-			in the units column. Line up the decimal points in the question and the answer.
es by a single digit.			points in the question and the answer.
			3 · 1 9
			× 8
			25.52
			1 7


Objective &	Concrete	Pictorial	Abstract	V
Strategy				Y
Division as sharing	00	Children use pictures or shapes to share quanti- ties.	12 shared between 3 is	L
Use Gordon ITPs for modelling	00	த்த் த்த்	4	Λ.
	CONTRACTOR OF	8 Shared Detween 2 15 4		C
		Sharing:		
		12 shared between 3 is 4		7
	_10			
				C
	I have 10 cubes, can you share them equally in 2 groups?			


Objective &	Concrete	Pictorial	Abstract	Vŋ
Strategy				I I Z
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quanti- ties. $\begin{array}{c} & & & & & & & & & & \\ & & & & & & & &$	12 ÷ 3 = 4	
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $\boxed{10}_{0}$	Use number lines for grouping $ \begin{array}{r} $	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?	S O Z I

Objective & Strategy	Concrete	Pictorial	Abstract	Y
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$ $96 \div 3 = 32$	Continue to use bar modelling to aid solving division problems. 20 20 \div 5 = ? 5 x ? = 20	How many groups of 6 in 24? 24 ÷ 6 = 4	
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. 7 x 4 = 28 4 x 7 = 28 28 ÷ 7 = 4 28 ÷ 4 = 7 28 = 7 x 4 28 = 4 x 7 4 = 28 ÷ 7 7 = 28 ÷ 4	



Long Division			
-a remainder in the tens			
1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.	
2 2 2 5 8	t o 2 2 2 5 8 -4 1	t ∘ 2 9 2) 5 8 <u>- 4 ↓</u> 1 8	
oes into 5 two times, or 5 tens 2 whole tens but there is a nder!	To find it, multiply $2 \times 2 = 4$, write that 4 under the five, and subtract to find the remainder of 1 ten.	Next, drop down the 8 of the ones next to the leftover 1 ten. You combine the remainder ten with 8 ones, and get 18.	
1. Divide.	2. Multiply & subtract.	3. Drop down the next digit.	
t o 2 <mark>9</mark>	t o 29	t o <mark>29</mark>	
2)58 <u>-4</u> <mark>18</mark>	2)58 -4 18 - <u>18</u> 0	2)58 <u>-4</u> 18 <u>-18</u> 0	
e 2 into 18. Place 9 into the ent.	Multiply 9 × 2 = 18, write that 18 under the 18, and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29.	

