Mathematics at St Augustine's Catholic Primary School

Year 4 End Points

Number number and place value	Number addition and subtraction	Number multiplication and division	Number fractions (including decimals)	Measurement	Geometry properties of shapes	Geometry position and direction	Statistics
Pupils will be able to:							
count in multiples of $6,7,9,25$ and 1000 find 1000 more or less than a given number count backwards through zero to include negative numbers recognise the place value of each digit in a four-digit number (thousands,	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate estimate and use inverse operations to check answers to a calculation	recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers recognise and use factor pairs and	recognise and show, using diagrams, families of common equivalent fractions count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. solve problems involving increasingly harder fractions to	Convert between different units of measure [for example, kilometre to metre; hour to minute] measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes identify acute and obtuse angles and compare and order angles up to two right angles by size identify lines of symmetry in 2-D shapes presented	describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. solve comparison, sum and difference problems using information presented in bar charts, pictograms,

hundreds, tens, and ones) order and compare numbers beyond 1000 identify, represent and estimate numbers using different representations round any number to the nearest 10 , 100 or 1000 solve number and practical problems that involve all of the above and with increasingly large positive numbers read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	commutativity in mental calculations multiply two-digit and three-digit numbers by a one-digit number using formal written layout solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number add and subtract fractions with the same denominator recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to $4^{1}, 2^{1},{ }_{4}^{3}$ find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths round decimals with one decimal place to the nearest whole number	by counting squares estimate, compare and calculate different measures, including money in pounds and pence read, write and convert time between analogue and digital 12- and 24-hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	in different orientations complete a simple symmetric figure with respect to a specific line of symmetry.	complete a given polygon.	tables and other graphs.

			compare numbers with the same number of decimal places up to two decimal places solve simple measure and money problems involving fractions and decimals to two decimal places.				
Notes and guidance (non-statutory)							
Using a variety of representations, including measures, pupils become fluent in the order and place value of numbers beyond 1000, including counting in tens and hundreds, and maintaining fluency in other multiples through varied and frequent practice. They begin to extend their knowledge of the number system to include the decimal numbers and	Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency	Pupils continue to practise recalling and using multiplication tables and related division facts to aid fluency. Pupils practise mental methods and extend this to three-digit numbers to derive facts, (for example 600 $\div 3=200$ can be derived from $2 \times 3=$ 6). Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers (see	Pupils should connect hundredths to tenths and place value and decimal measure. They extend the use of the number line to connect fractions, numbers and measures. Pupils understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis	Pupils build on their understanding of place value and decimal notation to record metric measures, including money. They use multiplication to convert from larger to smaller units. Perimeter can be expressed algebraically as 2(a $+b$) where a and b are the dimensions in the same unit.	Pupils continue to classify shapes using geometrical properties, extending to classifying different triangles (for example, isosceles, equilateral, scalene) and quadrilaterals (for example, parallelogram, rhombus, trapezium). Pupils compare and order angles in preparation for using a protractor and compare	Pupils draw a pair of axes in one quadrant, with equal scales and integer labels. They read, write and use pairs of coordinates, for example (2, 5), including using coordinateplotting ICT tools.	Pupils understand and use a greater range of scales in their representations. Pupils begin to relate the graphical representation of data to recording change over time.

