Mathematics at St Augustine's Catholic Primary School

Year 5 End Points

Number number and place value	Number addition and subtraction	Number multiplication and division	Number fractions (including decimals and percentages)	Measurement	Geometry properties of shapes	Geometry - position and direction	Statistics
Pupils will be able to:							
read, write, order and compare numbers to at least 1000000 and determine the value of each digit count forwards or backwards in steps of powers of 10 for any given number up to 1000000 interpret negative numbers in	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) add and subtract numbers mentally with increasingly large numbers use rounding to check answers to calculations and determine, in the	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is	compare and order fractions whose denominators are all multiples of the same number identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert from one form to the	convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) understand and use approximate equivalences between metric units and common	identify 3-D shapes, including cubes and other cuboids, from 2D representations know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	solve comparison, sum and difference problems using information presented in a line graph complete, read and interpret information in tables, including timetables.

Notes and guidance (non-statutory)							
Pupils identify the place value in large whole numbers. They continue to use number in context, including measurement. Pupils extend and apply their understanding of the number system to the decimal numbers and fractions that they have met so far. They should recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule.	Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency (see Mathematics Appendix 1). They practise mental calculations with increasingly large numbers to aid fluency (for example, 12462 $2300=10162$).	Pupils practise and extend their use of the formal written methods of short multiplication and short division (see Mathematics Appendix 1). They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations. They use and understand the terms factor, multiple and prime, square and cube numbers. Pupils interpret non-integer answers to division by expressing results in different ways according to the context,	Pupils should be taught throughout that percentages, decimals and fractions are different ways of expressing proportions. They extend their knowledge of fractions to thousandths and connect to decimals and measures. Pupils connect equivalent fractions > 1 that simplify to integers with division and other fractions > 1 to division with remainders, using the number line and other models, and hence move from these to improper and mixed fractions. Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to	Pupils use their knowledge of place value and multiplication and division to convert between standard units. Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of perimeter or area to find unknown lengths. Missing measures questions such as these can be expressed algebraically, for example $4+2 b=20$ for a rectangle of sides 2 cm and $b \mathrm{~cm}$ and perimeter of 20 cm . Pupils calculate the area from scale drawings using given measurements.	Pupils become accurate in drawing lines with a ruler to the nearest millimetre, and measuring with a protractor. They use convention al markings for parallel lines and right angles. Pupils use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and	Pupils recognise and use reflection and translation in a variety of diagrams, including continuing to use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.	Pupils connect their work on coordinates and scales to their interpretatio n of time graphs. They begin to decide which representatio ns of data are most appropriate and why.

They should recognise and describe linear number sequences (for example, $3,3_{2}{ }^{1}$, 4, $\left.4_{2}{ }^{1} . ..\right)$, including those involving fractions and decimals, and find the term-to-term rule in words (for example, add 2^{1}).		including with remainders, as fractions, as decimals or by rounding(forexamp le, $98 \div 4={ }^{98}$ $=24 \mathrm{r} 2=24^{1}$ $=24.5 \approx 25$). Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres. Distributivity can be expressed as $a(b+c)=a b+a c$. They understand the terms factor, multiple and	division, building on work from previous years. This relates to scaling by simple fractions, including fractions >1. Pupils practise adding and subtracting fractions to become fluent through a variety of increasingly complex problems. They extend their understanding of adding and subtracting fractions to calculations that exceed 1 as a mixed number. Pupils continue to practise counting forwards and backwards in simple fractions. Pupils continue to develop their understanding of fractions as numbers, measures and operators by finding	Pupils use all four operations in problems involving time and money, including conversions (for example, days to weeks, expressing the answer as weeks and days).	other properties of quadrilatera Is, for example using dynamic geometry ICT tools. Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.		

			complements of 1 (for example, $0.83+0.17$ $=1$). Pupils should go beyond the measurement and money models of decimals, for example, by solving puzzles involving decimals. Pupils should make connections between percentages, fractions and decimals (for example, 100% represents a whole quantity and 1% is ${ }^{1}$, 50% is ${ }^{50}, 25 \%$ is ${ }^{25}$) and 100100100 relate this to finding 'fractions of'.				

