Mathematics at St Augustine's Catholic Primary School

Year 5 End Points

Number – number and place value	Number – addition and subtraction	Number – multiplication and division	Number – fractions (including decimals and percentages)	Measurement	Geometry – properties of shapes	Geometry – position and direction	Statistics
Pupils will be a	ble to:						
read, write, order	add and subtract	identify multiples	compare and order	convert between	identify 3-D	identify,	solve
and compare	whole numbers with	and factors,	fractions whose	different units of	shapes,	describe and	comparison,
numbers to at	more than 4 digits,	including finding all	denominators are all	metric measure	including cubes	represent the	sum and
least 1 000 000	including using formal	factor pairs of a	multiples of the same	(for example,	and other	position of a	difference
and determine	written methods	number, and	number	kilometre and	cuboids, from 2-	shape	problems using
the value of each	(columnar addition	common factors of		metre; centimetre	D	following a	information
digit	and subtraction)	two numbers	identify, name and write equivalent	and metre; centimetre and	representations	reflection or translation,	presented in a line graph
count forwards or	add and subtract	know and use the	fractions of a given	millimetre; gram	know angles are	using the	C .
backwards in	numbers mentally	vocabulary of prime	fraction, represented	and kilogram; litre	measured in	appropriate	complete, read
steps of powers	with increasingly large	numbers, prime	visually, including	and millilitre)	degrees:	language, and	and interpret
of 10 for any	numbers	factors and	tenths and hundredths		estimate and	know that	information in
given number up		composite (non-		understand and	compare acute,	the shape has	tables,
to 1 000 000	use rounding to check	prime) numbers	recognise mixed	use approximate	obtuse and	not changed.	including
	answers to		numbers and improper	equivalences	reflex angles		timetables.
interpret negative	calculations and	establish whether a	fractions and convert	between metric			
numbers in	determine, in the	number up to 100 is	from one form to the	units and common			

context, count	context of a problem,	prime and recall	other and write	imperial units such	draw given
forwards and	levels of accuracy	prime numbers up to	mathematical	as inches, pounds	angles, and
backwards with	levels of accuracy	19	statements > 1 as a	•	measure them
positive and	solve addition and	19	mixed number [for	and pints	
•					in degrees (⁰)
negative whole	subtraction multi-step	multiply numbers up	example, $5^2 + 5^4$	measure and	identify:
numbers,	problems in contexts,	to 4 digits by a one-		calculate the	
including through	deciding which	or two-digit number	6 1.	perimeter of	- angles at a
zero	operations and	using a formal	$= 5^{6} = 15^{1}$	composite	point and one
	methods to use and	written method,		rectilinear shapes	whole turn
round any	why.	including long	add and subtract	in centimetres and	
number up to 1		multiplication for	fractions with the same	metres	(total 360 ⁰)
000 000 to the		two-digit numbers	denominator and		
nearest 10, 100,			denominators that are	calculate and	
1000, 10 000 and		multiply and divide	multiples of the same	compare the area	- angles at a
100 000		numbers mentally	number	of rectangles	point on a
		drawing upon known		(including squares),	straight line and
solve number		facts	multiply proper	and including using	2 ¹ a turn (total
problems and			fractions and mixed	standard units,	
practical		divide numbers up to	numbers by whole	square centimetres	180 ⁰)
problems that		4 digits by a one-	numbers, supported by	(cm ²) and square	
involve all of the		digit number using	materials and diagrams	2	- other
above		the formal written		metres (m ²) and	multiples of 90 ⁰
		method of short	read and write decimal	estimate the area	multiples of 90
read Roman		division and		of irregular shapes	
numerals to 1000		interpret remainders	numbers as fractions		use the
(M) and recognise		appropriately for the	[for example, $0.71 = ^{71}$]	estimate volume	properties of
years written in		context	100	[for example, using	rectangles to
, Roman numerals.				1 cm ³ blocks to	deduce related
		multiply and divide	recognise and use		facts and find
		whole numbers and	thousandths and relate	build cuboids	missing lengths
		those involving	them to tenths,	(including cubes)]	and angles
		decimals by 10, 100	hundredths and decimal	and capacity [for	
		and 1000	equivalents	example, using	distinguish
				water]	between regular
		recognise and use	round decimals with		and irregular
		-	two decimal places to	solve problems	polygons based
		square numbers and	the nearest whole	involving	on reasoning
		cube numbers, and		converting	about equal
		the notation for			

Notes and gui	dance (non-statutory	()				<u> </u>	
Pupils identify	Pupils practise using	Pupils practise and	Pupils should be	Pupils use their	Pupils	Pupils	Pupils
the place value	the formal written	extend their use of	taught throughout	knowledge of place	become	recognise	connect thei
in large whole	methods of	the formal written	that percentages,	value and	accurate in	and use	work on
numbers.	columnar addition	methods of short	decimals and fractions	multiplication and	drawing	reflection	coordinates
	and subtraction with	multiplication and	are different ways of	division to convert	lines with a	and	and scales to
They continue	increasingly large	short division (see	expressing	between standard	ruler to the	translation	their
to use number	numbers to aid	Mathematics	proportions.	units.	nearest	in a variety	interpretatio
in context,	fluency (see	Appendix 1). They			millimetre,	of diagrams,	n of time
including	Mathematics	apply all the	They extend their	Pupils calculate the	and	including	graphs. They
measurement.	Appendix 1).	multiplication	knowledge of	perimeter of	measuring	continuing	begin to
Pupils extend		tables and related	fractions to	rectangles and	with a	to use a 2-D	decide which
and apply their	They practise mental	division facts	thousandths and	related composite	protractor.	grid and	representati
understanding	calculations with	frequently, commit	connect to decimals	shapes, including	They use	coordinates	ns of data ar
of the number	increasingly large	them to memory	and measures.	using the relations	convention	in the first	most
system to the	numbers to aid	and use them		of perimeter or area	al markings	quadrant.	appropriate
decimal	fluency (for	confidently to	Pupils connect	to find unknown	for parallel	Reflection	and why.
numbers and	example, 12 462 –	make larger	equivalent fractions >	lengths. Missing	lines and	should be in	
fractions that	2300 = 10 162).	calculations.	1 that simplify to	measures questions	right angles.	lines that	
they have met			integers with division	such as these can be		are parallel	
so far.		They use and	and other fractions >	expressed	Pupils use	to the axes.	
		understand the	1 to division with	algebraically, for	the term		
They should		terms factor,	remainders, using the	example 4 + 2 <i>b</i> = 20	diagonal		
recognise and		multiple and	number line and	for a rectangle of	and make		
describe linear		prime, square and	other models, and	sides 2 cm and b cm	conjectures		
number		cube numbers.	hence move from	and perimeter of	about the		
sequences,			these to improper and	20cm.	angles		
including those		Pupils interpret	mixed fractions.		formed		
involving		non-integer		Pupils calculate the	between		
fractions and		answers to division	Pupils connect	area from scale	sides, and		
decimals, and		by expressing	multiplication by a	drawings using given	between		
find the term-		results in different	fraction to using	measurements.	diagonals		
to-term rule.		ways according to	fractions as operators		and parallel		
		the context,	(fractions of), and to		sides, and		

They should	including with	division, building on	Pupils use all four	other
recognise and	remainders, as	work from previous	operations in	properties
describe linear	fractions, as	years. This relates to	problems involving	of
number	decimals or by	scaling by simple	time and money,	guadrilatera
sequences (for	rounding(forexamp	fractions, including	including	ls, for
example, 3, 3 ¹ ₂ ,	le,98÷4= ⁹⁸	fractions > 1.	conversions (for	example
-	$=24r2=24^{1}$		example, days to	using
4, 4 ¹ ₂),	=24.5≈25).	Pupils practise adding	weeks, expressing	dynamic
_		and subtracting	the answer as weeks	geometry
including those	Pupils use	fractions to become	and days).	ICT tools.
involving	, multiplication and	fluent through a		
fractions and	division as inverses	variety of increasingly		Pupils use
decimals, and	to support the	complex problems.		angle sum
find the term-	introduction of	They extend their		facts and
to-term rule in	ratio in year 6, for	understanding of		other
words (for	example, by	adding and		properties
example, add	multiplying and	subtracting fractions		to make
2 ¹).	dividing by powers	to calculations that		deductions
	of 10 in scale	exceed 1 as a mixed		about
	drawings or by	number.		missing
	multiplying and			angles and
	dividing by powers	Pupils continue to		relate these
	of a 1000 in	practise counting		to missing
	converting	forwards and		number
	between units such	backwards in simple		problems.
	as kilometres and	fractions.		
	metres.			
		Pupils continue to		
	Distributivity can	develop their		
	be expressed as	understanding of		
	a(b+c)=ab+ac.	fractions as numbers,		
		measures and		
	They understand	operators by finding		
	the terms factor,			
	multiple and			

		1	
prime, square and	fractions of numbers		
cube numbers and	and quantities.		
use them to			
construct	Pupils extend		
equivalence	counting from year 4,		
statements (for	using decimals and		
example, 4 x 35 = 2	fractions including		
x 2 x 35;	bridging zero, for		
3x270=3x3x9x10=9	example on a number		
² x10).	line.		
×10 <i>j</i> .			
Pupils use and	Pupils say, read and		
explain the equals	write decimal		
sign to indicate	fractions and related		
equivalence,	tenths, hundredths		
	and thousandths		
including in missing	accurately and are		
numberproblems(f	confident in checking		
orexample,13+24=	the reasonableness of		
12+25;33=5x).	their answers to		
	problems.		
	problems.		
	They mentally add		
	and subtract tenths,		
	and one-digit whole		
	numbers and tenths.		
	numbers and tentils.		
	They practise adding		
	and subtracting		
	decimals, including a		
	mix of whole numbers		
	and decimals,		
	decimals with		
	different numbers of		
	decimal places, and		

complements of 1 (for example, 0.83 + 0.17 = 1).Pupils should go beyond the measurement and money models of decimals, for example, by solving puzzles involving decimals.Pupils should make connections between percentages, fractions and decimals (forexample, 100% represents a whole quantity and 1% is 1, 50% is 50, 25% is 25) and 100 100 100	