Mathematics at St Augustine's Catholic Primary School

Year 6 End Points

Number – number and place value	Number – addition, subtraction, multiplication and division	Number – fractions (including decimals and percentages)	Ratio and proportion	Algebra	Measurement	Geometry – properties of shapes	Geometry – position and direction	Statistics
Pupils will	be able to:							
read, write,	multiply multi-	use common	solve problems	use simple	solve problems	draw 2-D shapes	describe	interpret and
order and	digit numbers	factors to	involving the	formulae	involving the	using given	positions on the	construct pie
compare	up to 4 digits by	simplify	relative sizes of		calculation and	dimensions and	full coordinate	charts and line
numbers up	a two-digit	fractions; use	two quantities	generate and	conversion of units	angles	grid (all four	graphs and use
to 10 000	whole number	common	where missing	describe linear	of measure, using		quadrants)	these to solve
000 and	using the formal	multiples to	values can be	number	decimal notation up	recognise,		problems
determine	written method	express fractions	found by using	sequences	to three decimal	describe and	draw and	
the value of	of long	in the same	integer		places where	build simple 3-D	translate simple	calculate and
each digit	multiplication	denomination	multiplication	express missing	appropriate	shapes,	shapes on the	interpret the
			and division	number		including making	coordinate	mean as an
round any	divide numbers	compare and	facts	problems	use, read, write and	nets	plane, and	average.
whole	up to 4 digits by	order fractions,		algebraically	convert between		reflect them in	
number to	a two-digit	including	solve problems		standard units,	compare and	the axes.	
a required	whole number	fractions > 1	involving the		converting	classify		
degree of	using the formal		calculation of	find pairs of	measurements of	geometric		
accuracy	written method	add and subtract	percentages	numbers that	length, mass,	shapes based on		
	of long division,	fractions with	[for example, of	satisfy an	volume and time	their properties		
•	and interpret	different	measures, and		from a smaller unit	and sizes and		

		dan analos stress			-f	final coolings	
use 	remainders as	denominators	such as 15% of	equation with	of measure to a	find unknown	
negative	whole number	and mixed	360] and the	two unknowns	larger unit, and vice	angles in any	
numbers in	remainders,	numbers, using	use of		versa, using decimal	triangles,	
context,	fractions, or by	the concept of	percentages for	enumerate	notation to up to	quadrilaterals,	
and	rounding, as	equivalent	comparison	possibilities of	three decimal places	and regular	
calculate	appropriate for	fractions		combinations of		polygons	
intervals	the context		solve problems	two variables.	convert between		
across zero		multiply simple	involving similar		miles and kilometres	illustrate and	
	divide numbers	pairs of proper	shapes where			name parts of	
solve	up to 4 digits by	fractions, writing	the scale factor		recognise that	circles, including	
number	a two-digit	the answer in its	is known or can		shapes with the	radius, diameter	
and	number using	simplest form [f	be found		same areas can have	and	
practical	the formal	orexample,			different perimeters	circumference	
problems	written method	$4^{1} \times 2^{1} = 8^{1}$]	solve problems		and vice versa	and know that	
that involve	of short division	4 ^2 -8 1	involving			the diameter is	
all of the	where		unequal sharing		recognise when it is	twice the radius	
above.	appropriate,	divide proper	and grouping		possible to use		
	interpreting	fractions by	using		formulae for area	recognise angles	
	remainders	whole numbers	knowledge of		and volume of	where they	
	according to the	[for example, 3 ¹	fractions and		shapes	meet at a point,	
	context		multiples.		·	are on a straight	
		$\div 2 = 6^{1}$]			calculate the area of	line, or are	
	perform mental				parallelograms and	vertically	
	calculations,	associate a			triangles	opposite, and	
	including with	fraction with				find missing	
	mixed	division and			calculate, estimate	angles.	
	operations and	calculate			and compare		
	large numbers	decimal fraction			volume of cubes and		
		equivalents [for			cuboids using		
	identify	example, 0.375]			standard units,		
	common	for a simple			including cubic		
	factors,	fraction [for					
	common	_			centimetres (cm ³)		
	multiples and	example, ³ ₈]			and cubic metres		
	prime numbers				(m ³), and extending		
		identify the			to other units [for		
	use their	value of each					
	knowledge of	digit in numbers					
		given to three					

	4			
the order of	decimal places	example, mm ³ and		
operations to	and multiply and	km ³].		
carry out	divide numbers	кт J.		
calculations	by 10, 100 and			
involving the	1000 giving			
four operation				
	three decimal			
solve addition	1 ·			
and subtraction				
multi-step	multiply one-			
problems in	digit numbers			
contexts,	with up to two			
deciding which				
operations and				
methods to us	e numbers			
and why				
	use written			
solve problem				
involving	in cases where			
addition,	the answer has			
subtraction,	up to two			
multiplication	decimal places			
and division				
	solve problems			
use estimation	•			
to check	answers to be			
answers to	rounded to			
calculations ar	•			
determine, in	degrees of			
the context of	a accuracy			
problem, an				
appropriate	recall and use			
degree of	equivalences			
accuracy.	between simple			
	fractions,			
	decimals and			
	percentages,			
	including in			

		different						
		contexts.						
Notes and	guidance (non	-statutory)						
Pupils use	Pupils practise	Pupils should	Pupils	Pupils should	Pupils connect	Pupils draw	Pupils draw	Pupils connect
the whole	addition,	practise, use	recognise	be introduced	conversion (for	shapes and	and label a	their work on
number	subtraction,	and	proportionality	to the use of	example, from	nets	pair of axes in	angles,
system,	multiplication	understand the	in contexts	symbols and	kilometres to	accurately,	all four	fractions and
including	and division for	addition and	when the	letters to	miles) to a	using	quadrants	percentages to
saying,	larger	subtraction of	relations	represent	graphical	measuring	with equal	the
reading	numbers, using	fractions with	between	variables and	representation as	tools and	scaling. This	interpretation
and	the formal	different	quantities are	unknowns in	preparation for	conventional	extends their	of pie charts.
writing	written	denominators	in the same	mathematical	understanding	markings and	knowledge of	
numbers	methods of	by identifying	ratio (for	situations that	linear/proportional	labels for lines	one quadrant	Pupils both
accurately.	columnar	equivalent	example,	they already	graphs.	and angles.	to all four	encounter and
_	addition and	fractions with	similar shapes	understand,		_	quadrants,	draw graphs
	subtraction,	the same	and recipes).	such as:	They know	Pupils describe	including the	relating two
	short and long	denominator.			approximate	the properties	use of	variables,
	multiplication,	They should	Pupils link	§ missing	conversions and	of shapes and	negative	arising from
	and short and	start with	percentages or	numbers,	are able to tell if	explain how	numbers.	their own
	long division	fractions	360° to	lengths,	an answer is	unknown		enquiry and in
	(see	where the	calculating	coordinates	sensible.	angles and	Pupils draw	other subjects.
	Mathematics	denominator	angles of pie	and angles §		lengths can be	and label	
	Appendix 1).	of one fraction	charts.	formulae in	Using the number	derived from	rectangles	They should
		is a multiple of		mathematics	line, pupils use,	known	(including	connect
	They	the other	Pupils should	and science	add and subtract	measurements.	squares),	conversion
	undertake		consolidate	§ equivalent	positive and		parallelograms	from
	mental	(for example, 1	their	expressions	negative integers	These	and	kilometres to
	calculations	$+_{8}^{1} = _{8}^{5}$) and	understanding	(for example,	for measures such	relationships	rhombuses,	miles in
	with		of ratio when	$a+b=b+a) \S$	as temperature.	might be	specified by	measurement
	increasingly	progress to	comparing	generalisations		expressed	coordinates in	to its graphical
	large numbers	varied and	quantities,	of number	They relate the	algebraically	the four	representation.
	and more	increasingly	sizes and scale	patterns	area of rectangles	for example, d	quadrants,	
			drawings by		to parallelograms		predicting	

complex	complex	solving a	§ number	and triangles, for	$= 2 \times r; a = 180$	missing	Pupils know
calculations.	problems.	variety of	puzzles (for	example, by	-(b+c).	coordinates	when it is
		problems.	example, what	dissection, and	,	using the	appropriate to
Pupils continue	Pupils should	They might	two numbers	calculate their		properties of	find the mean
to use all the	use a variety of	use the	can add up to)	areas,		shapes. These	of a data set.
multiplication	images to	notation <i>a</i> : <i>b</i> to		understanding and		might be	
tables to	support their	record their		using the formulae		expressed	
calculate	understanding	work.		(in words or		algebraically	
mathematical	of			symbols) to do		for example,	
statements in	multiplication	Pupils solve		this.		translating	
order to	with fractions.	problems				vertex (a, b) to	
maintain their	This follows	involving		Pupils could be		(a-2, b+3);	
fluency.	earlier work	unequal		introduced to		(<i>a, b</i>) and (<i>a</i> +	
	about fractions	quantities, for		compound units		<i>d, b</i> + <i>d</i>) being	
Pupils round	as operators	example, 'for		for speed, such as		opposite	
answers to a	(fractions of),	every egg you		miles per hour,		vertices of a	
specified	as numbers,	need three		and apply their		square of side	
degree of	and as equal	spoonfuls of		knowledge in		d.	
accuracy, for	parts of	flour', ' ³ of		science or other			
example, to	objects, for	the class are		subjects as			
the nearest 10,	example as	boys'. These		appropriate.			
20, 50 etc., but	parts of a	problems are					
not to a	rectangle.	the foundation					
specified number of	Dunile use their	for later					
significant	Pupils use their understanding	formal					
figures.	of the	approaches to					
rigures.	relationship	ratio and					
Pupils explore	between unit	proportion.					
the order of	fractions and						
operations	division to						
using brackets;	work						
for example, 2	backwards by						
	multiplying a						
	quantity that						

+ 1 x 3 = 5 and	represents a			
$(2+1) \times 3 = 9.$	unit fraction to			
(2 1) × 3 = 3.	find the whole			
Common	Tilla tile wilole			
factors can be	quantity (for			
related to	example, if $_4^{\ 1}$ of			
finding	a length is			
equivalent	36cm, then the			
fractions.	whole length is			
	36 × 4 =			
	144cm).			
	21101117.			
	They practise			
	calculations			
	with simple			
	fractions and			
	decimal			
	fraction			
	equivalents to			
	aid fluency,			
	including listing			
	equivalent			
	fractions to			
	identify			
	fractions with			
	common			
	denominators.			
	Pupils can			
	explore and			
	make			
	conjectures			
	about			
	converting a			
	simple fraction			

		T	
to a decimal			
fraction (for			
example, 3 ÷ 8			
= 0.375). For			
simple			
fractions with			
recurring			
decimal			
equivalents,			
pupils learn			
about rounding			
the decimal to			
three decimal			
places, or other			
appropriate			
approximations			
depending on			
the context.			
Pupils multiply			
and divide			
numbers with			
up to two			
decimal places			
by one-digit			
and two-digit			
whole			
numbers.			
Pupils multiply			
decimals by			
whole			
numbers,			
starting with			
the simplest			
cases, such as			
$0.4 \times 2 = 0.8$,			
,	l	l .	

1			
and in practical			
contexts, such			
as measures			
and money.			
Pupils are			
introduced to			
the division of			
decimal			
numbers by			
one-digit			
whole number,			
initially, in			
practical			
contexts			
involving			
measures and			
money. They			
recognise			
division			
calculations as			
the inverse of			
multiplication.			
Pupils also			
develop their			
skills of			
rounding and			
estimating as a			
means of			
predicting and			
checking the			
order of			
magnitude of			
their answers			

	to decimal				
	calculations.				
	This includes				
	rounding				
	answers to a				
	specified				
	degree of				
	accuracy and				
	checking the				
	reasonableness				
	of their				
	answers.				
	4				
1			1		