Mathematics at St Augustine’s Catholic Primary School

Year 6 End Points

Number number and place value	Number addition, subtraction, multiplication and division	Number - fractions (including decimals and percentages)	Ratio and proportion	Algebra	Measurement	Geometry properties of shapes	Geometry position and direction	Statistics
Pupils will be able to:								
read, write, order and compare numbers up to 10000 000 and determine the value of each digit round any whole number to a required degree of accuracy	multiply multi- digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret	use common factors to simplify fractions; use common multiples to express fractions in the same denomination compare and order fractions, including fractions > 1 add and subtract fractions with different	solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts solve problems involving the calculation of percentages [for example, of measures, and	use simple formulae generate and describe linear number sequences express missing number problems algebraically find pairs of numbers that satisfy an	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit	draw 2-D shapes using given dimensions and angles recognise, describe and build simple 3-D shapes, including making nets compare and classify geometric shapes based on their properties and sizes and	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.	interpret and construct pie charts and line graphs and use these to solve problems calculate and interpret the mean as an average.

use negative numbers in context, and calculate intervals across zero solve number and practical problems that involve all of the above.	remainders as whole number remainders, fractions, or by rounding, as appropriate for the context divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbers identify common factors, common multiples and prime numbers use their knowledge of	denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form [f orexample, $4^{1} \times 2^{1}=8^{1}$] divide proper fractions by whole numbers [for example, 3^{1} $\left.\div 2=6^{1}\right]$ associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, ${ }^{3} 8$] identify the value of each digit in numbers given to three	such as 15% of 360] and the use of percentages for comparison solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.	equation with two unknowns enumerate possibilities of combinations of two variables.	of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places convert between miles and kilometres recognise that shapes with the same areas can have different perimeters and vice versa recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for	find unknown angles in any triangles, quadrilaterals, and regular polygons illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.		

		different contexts.						
Notes and guidance (non-statutory)								
Pupils use the whole number system, including saying, reading and writing numbers accurately.	```Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division (see Mathematics Appendix 1). They undertake mental calculations with increasingly large numbers and more```	Pupils should practise, use and understand the addition and subtraction of fractions with different denominators by identifying equivalent fractions with the same denominator. They should start with fractions where the denominator of one fraction is a multiple of the other (for example, ${ }_{2}{ }^{1}$ $+{ }_{8}{ }^{1}={ }_{8}^{5}$) and progress to varied and increasingly	$\begin{aligned} & \text { Pupils } \\ & \text { recognise } \\ & \text { proportionality } \\ & \text { in contexts } \\ & \text { when the } \\ & \text { relations } \\ & \text { between } \\ & \text { quantities are } \\ & \text { in the same } \\ & \text { ratio (for } \\ & \text { example, } \\ & \text { similar shapes } \\ & \text { and recipes). } \\ & \text { Pupils link } \\ & \text { percentages or } \\ & 360^{\circ} \text { to } \\ & \text { calculating } \\ & \text { angles of pie } \\ & \text { charts. } \\ & \text { Pupils should } \\ & \text { consolidate } \\ & \text { their } \\ & \text { understanding } \\ & \text { of ratio when } \\ & \text { comparing } \\ & \text { quantities, } \\ & \text { sizes and scale } \\ & \text { drawings by } \\ & \hline \end{aligned}$	Pupils should be introduced to the use of symbols and letters to represent variables and unknowns in mathematical situations that they already understand, such as: § missing numbers, lengths, coordinates and angles § formulae in mathematics and science § equivalent expressions (for example, $a+b=b+a) \S$ generalisations of number patterns	Pupils connect conversion (for example, from kilometres to miles) to a graphical representation as preparation for understanding linear/proportional graphs. They know approximate conversions and are able to tell if an answer is sensible. Using the number line, pupils use, add and subtract positive and negative integers for measures such as temperature. They relate the area of rectangles to parallelograms	Pupils draw shapes and nets accurately, using measuring tools and conventional markings and labels for lines and angles. Pupils describe the properties of shapes and explain how unknown angles and lengths can be derived from known measurements. These relationships might be expressed algebraically for example, d	Pupils draw and label a pair of axes in all four quadrants with equal scaling. This extends their knowledge of one quadrant to all four quadrants, including the use of negative numbers. Pupils draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting	Pupils connect their work on angles, fractions and percentages to the interpretation of pie charts. Pupils both encounter and draw graphs relating two variables, arising from their own enquiry and in other subjects. They should connect conversion from kilometres to miles in measurement to its graphical representation.

	$\begin{aligned} & +1 \times 3=5 \text { and } \\ & (2+1) \times 3=9 . \end{aligned}$ Common factors can be related to finding equivalent fractions.	represents a unit fraction to find the whole quantity (for example, if ${ }_{4}^{1}$ of a length is 36 cm , then the whole length is $36 \times 4=$ 144 cm). They practise calculations with simple fractions and decimal fraction equivalents to aid fluency, including listing equivalent fractions to identify fractions with common denominators. Pupils can explore and make conjectures about converting a simple fraction						

	to decimal calculations. This includes rounding answers to a specified degree of accuracy and checking the reasonableness of their answers.						

