'That they shall have life, life in all its fullness!'John 10:10
'Achieving great things through learning and growing together in a love-filled Christian family'

Mathematical Fluency Policy

Headteacher: Mrs Becky Ham

Maths Leader: Mr Adam Prescott

What is fluency?

Fluency is the ability to work out calculations of all sorts in your head (not just addition sums). It means being able to give an answer to a question without having to write down every step of the calculation.

It is our responsibility to teach the children strategies that will enable the children to get the answer in an efficient way.

Mental strategies are the foundations for most areas of mathematics and by training rapid recall it will free up their working memory. If we don't do this, children will still calculate these basic facts again and again. This is why we often see children fall short on 2 step and 3 step word problems as they calculate the basic facts and feel like they have completed the question.

If we take this constraint away, it will lead to more success across the more challenging aspects of the maths curriculum.

Year 6 end of year assessments

In the Arithmetic paper over 80% of the questions are designed to be solved mentally. However, many children complete this paper using formal written methods leading to them running out of time. To challenge this at St Barnabas, we intend on teaching the related number facts needed for rapid recall in every year group.

What is the intention behind this document?

The intention behind this document is to give teachers a clear indication of the number facts and mental calculations the children should be covering. This will ensure there is a clear pathway for students, and in turn, result in better outcomes in the year 6 assessments. The goal is to achieve fluency not just accuracy!

EYFS/KS 1

To expect a whole class to grasp rapid recall by the end of year 1 is a big ask due to the wide range of abilities lower down school. However, by the end of year 2 , children are expected to:

- Rapidly recall basic addition facts. This includes all number bonds to 20, and doubles to 20.
- Rapidly recall the related subtraction facts.
- Rapidly recall 2, 5 and 10 times tables.
- Begin to look at the link between the 2 and 4 times table.

Below is a table showing the number facts that the children should be able to rapidly recall by the time they join year 3.

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $0+0$ | $0+1$ | $0+2$ | $0+3$ | $0+4$ | $0+5$ | $0+6$ | $0+7$ | $0+8$ | $0+9$ | $0+10$ |
| 1 | $1+0$ | $1+1$ | $1+2$ | $1+3$ | $1+4$ | $1+5$ | $1+6$ | $1+7$ | $1+8$ | $1+9$ | $1+10$ |
| 2 | $2+0$ | $2+1$ | $2+2$ | $2+3$ | $2+4$ | $2+5$ | $2+6$ | $2+7$ | $2+8$ | $2+9$ | $2+10$ |
| 3 | $3+0$ | $3+1$ | $3+2$ | $3+3$ | $3+4$ | $3+5$ | $3+6$ | $3+7$ | $3+8$ | $3+9$ | $3+10$ |
| 4 | $4+0$ | $4+1$ | $4+2$ | $4+3$ | $4+4$ | $4+5$ | $4+6$ | $4+7$ | $4+8$ | $4+9$ | $4+10$ |
| 5 | $5+0$ | $5+1$ | $5+2$ | $5+3$ | $5+4$ | $5+5$ | $5+6$ | $5+7$ | $5+8$ | $5+9$ | $5+10$ |
| 6 | $6+0$ | $6+1$ | $6+2$ | $6+3$ | $6+4$ | $6+5$ | $6+6$ | $6+7$ | $6+8$ | $6+9$ | $6+10$ |
| 7 | $7+0$ | $7+1$ | $7+2$ | $7+3$ | $7+4$ | $7+5$ | $7+6$ | $7+7$ | $7+8$ | $7+9$ | $7+10$ |
| 8 | $8+0$ | $8+1$ | $8+2$ | $8+3$ | $8+4$ | $8+5$ | $8+6$ | $8+7$ | $8+8$ | $8+9$ | $8+10$ |
| 9 | $9+0$ | $9+1$ | $9+2$ | $9+3$ | $9+4$ | $9+5$ | $9+6$ | $9+7$ | $9+8$ | $9+9$ | $9+10$ |
| 10 | $10+0$ | $10+1$ | $10+2$ | $10+3$ | $10+4$ | $10+5$ | $10+6$ | $10+7$ | $10+8$ | $10+9$ | $10+10$ |

Adding 1 and $2 \quad$ Adding 10 Doubles Adding 0 Near Double Compensating and Adjusting

Year 3

Children will continue to learn the number facts from KS1 and the following facts:

- Addition and subtraction of multiples of 10 where the answer is between 0 and 100 (e.g. $70+30=100,20+40=60$)
- Double and halves of multiples of 10 to 100 (e.g. double $60=120$)
- Multiplying two-digit numbers by 10. (e.g. $24 \times 10=240$)

	1	2	3	4	5	6	7	8	9	10	11	12
1	1×1	2×1	3×1	4×1	5×1	6×1	7×1	8×1	9×1	10×1		
2	1×2	2×2	3×2	4×2	5×2	6×2	7×2	8×2	9×2	10×2		
3	1×3	2×3	3×3	4×3	5×3	6×3	7×3	8×3	9×3	10×3		
4	1×4	2×4	3×4	4×4	5×4	6×4		8×4		10×4		
5	1×5	2×5	3×5	4×5	5×5	6×5	7×5	8×5	9×5	10×5		
6	1×6	2×6	3×6	4×6	5×6	6×6		8×6		10×6		
7	1×7	2×7	3×7	4×7	5×7	6×7		8×7		10×7		
8	1×8	2×8	3×8	4×8	5×8	6×8		8×8		10×8		
9	1×9	2×9	3×9	4×9	5×9	6×9		8×9		10×9		
10	1×10	2×10	3×10	4×10	5×10	6×10	7×10	8×10	9×10	10×10		
11	1×11	2×11	3×11	4×11	5×11	6×11		8×11		10×11		
12	1×12	2×12	3×12	4×12	5×12	6×12		8×12		10×12		

$1 \times$ facts Doubles \mid Squares New Facts Known Facts

Year 4

Children will continue to develop the number facts from KS 1 and year 3. They will also learn the following facts:

- Addition and subtraction of multiples of 10 (e.g. $70+30=100,50+60=$ $110,20+40=60$);
- Addition and subtraction of multiples of 100 where the answer is 1,000 or less (e.g. $300+400=700,400+600=1,000$);
- Double and halves of multiples of 10 to 100 (e.g. double $60=120$, half 50 = 25);
- Multiplying two-digit numbers by 10 (e.g. $24 \times 10=240$);
- Halves of any even number to 100 (e.g. half of $22=11$);
- And multiplying any two and three-digit number by 10 and 100 (e.g. 24 $x 100=2,400$)

	1	2	3	4	5	6	7	8	9	10	11	12
1	1×1	2×1	3×1	4×1	5×1	6×1	7×1	8×1	9×1	10x1	11×1	12×1
2	1×2	2×2	3×2	4×2	5×2	6×2	7×2	8×2	9×2	10×2	11×2	12×2
3	1×3	2x3	3×3	4×3	5×3	6x3	7×3	8×3	9×3	10×3	11×3	12x3
4	1×4	2×4	3×4	4×4	5×4	6×4	7×4	8×4	9×4	10×4	11×4	12×4
5	1×5	2×5	3×5	4×5	5×5	6×5	7×5	8×5	9×5	10×5	11×5	12x5
6	1×6	2×6	3×6	4×6	5×6	6x6	7×6	8×6	9×6	10x6	11x6	12x6
7	1×7	2×7	3x7	4×7	5x7	6×7	7×7	8×7	9×7	10×7	11×7	12x7
8	1×8	2×8	3×8	4×8	5×8	6×8	7×8	8×8	9×8	10x8	11×8	12x8
9	1x9	2x9	3x9	4x9	5×9	6×9	7×9	8×9	9×9	10x9	11x9	12x9
10	1×10	2×10	3×10	4×10	5×10	6×10	7×10	8×10	9×10	10×10	11×10	12×10
11	1×11	2×11	3×11	4×11	5×11	6x11	7×11	8×11	9×11	10×11	11×11	12×11
12	1×12	2×12	3×12	4×12	5×12	6×12	7×12	8×12	9×12	10×12	11×12	12× 12

$1 \times$ facts Doubles Squares New Facts Known Facts

Year 5

Children will continue to develop the number facts from lower down school. They will also learn the following facts.

- Addition and subtraction of multiples of 10 (e.g. $70+30=100,50+60=$ $110,20+40=60$);
- Addition and subtraction of multiples of 100 (e.g. $300+400=700,400+$ $600=1,000,800+500=1,300$);
- Addition and subtraction of multiples of 1000 (e.g. $3000+4000=7000$);
- Double and halves of multiples of 10 to 100 (e.g. double $60=120$, half 50 = 25);
- Quadruples ($\times 4$) of all numbers to 10 (e.g. $6 \times 4=24$);
- Multiplying two-digit numbers by 10. (e.g. $24 \times 10=240$);
- Halves of any number to 100 (e.g. half of $22=11$, half of $51=25.5$);
- Multiplying and dividing any number by 10 and 100 (e.g. $24 \times 100=2,400,45$ $\div 100=0.45,3.4 \times 10=34$);
- Squares of all number up to 12 ;
- And cubes of 2,3,4 and 5 .

Year 6

Together with the 1-12x multiplication and division facts, and their basic addition facts, children should be able to answer the following Year 6 mental maths questions:

- Addition and subtraction of multiples of 10 (e.g. $70+30=100,50+60=$ $110,20+40=60$);
- Addition and subtraction of multiples of 100 (e.g. $300+400=700,400+$ $600=1,000,800+500=1,300$);
- Addition and subtraction of multiples of 1000 (e.g. $3000+4000=7000$);
- Double and halves of multiples of 10 to 100 (e.g. double $60=120$, half 50 = 25);
- Quadruples ($\times 4$) of all numbers to 10 (e.g. $6 \times 4=24$);
- Multiplying two-digit number by 10 (e.g. $24 \times 10=240$);
- Halves of any number up to 100 (e.g. half of $22=11$, half of $51=25.5$);
- Multiplying and dividing any number by 10 and 100 (e.g. $24 \times 100=$ $2,400,45 \div 100=0.45,3.4 \times 10=34$);
- Multiplication of multiples of 10 and 100 based on known facts (e.g. 40 $x 40=1,600$);
- Squares of all number up to 12;
- And cubes of 2,3,4 and 5 .

Mental Calculation Progression

Although this document outlines the rapid recall facts each year group must be achieving, below is a wider set of mental calculations and strategies that go hand in hand with the number facts above. Due to a wide range of abilities in KS1, teachers should prioritise the progression document below which should help the children develop rapid recall. In KS2, it is advised that teachers prioritise the rapid recall facts as this will aid the children when carrying out calculations displayed in the progression table below.

Year group	Addition and Subtraction Mental Calculation Skills	Methods or Strategies	Multiplication and Division Mental Calculation Skills (Working mentally with	Methods or Strategies
(Working mentally with				
jottings)				

	jottings)			
Year 1	- Number bonds to 10. - Add and subtract a pair of single digit numbers (not crossing 10) $\text { e.g. } 4+5,8-3$ - Add or subtract a single digit number from a teen number (not crossing 10 or 20) $\text { e.g. } 13+5,17-4$ - Add or subtract a single digit number to or from 20. - Add near doubles within 10. e.g. $5+6$ - Add a multiple of 10 to a single digit number. $\text { e.g. } 7+10,7+20$		Count on from or back to zero in ones, twos, fives or tens.	- Use the patterns of the last digit. e..g. Twos - digits end in 2 , 4, 6, 8, 0 Fives - digits end in 0 or 5 Tens - digits end in a zero This will help them make the link that a number can be in different times tables.
$\begin{aligned} & \text { Year } \\ & 2 \end{aligned}$	- Add and subtract a pair of single digit numbers (crossing 10) $\text { e.g. } 5+8,11-7$ - Add any single digit number to or from a multiple of 10 e.g. $60+5$ - Subtract any single digit number from a multiple of 10 . $\text { e.g. } 80-7$ - Add or subtract any single - digit number to or from a two-digit number. Including crossing the tens	- Reorder numbers when adding e.g. put the largest number first. - Partition small numbers in order to bridge through 10 and multiples of 10 . When adding and subtracting. - Partition and combine multiples of tens and ones. - Use knowledge of	- Double any multiple of 5 up to 50 e.g. double 35 - Halve any multiple of 10 up to 100 . e.g. halve 70 - Find half of even numbers to 40. e.g. half of 44 - Find the total number of objects when they are organised into groups of 2,5 and 10.	- Partition: double the tens and ones separately and then recombine Use the knowledge that halving is the inverse of doubling and doubling is the same as multiplying by 2. - Use knowledge of multiplication facts from the 2,5 and 10 times table.

	boundary. $\begin{array}{r} \text { e.g. } 23+5,27-3 \\ 28+6,33-5 \end{array}$ - Add or subtract any multiple of 10 to or from any two - digit number $\text { e.g. } 27+60,83-40$ - Add numbers such as 9, 19, 29 and 11,21,31 - Add near doubles of numbers in the teens. $\text { e.g. } 15+14,12+13$	pairs making 10. - Count on in tens and ones to find the total. - Count on or back in tens and ones to find the difference. - Add a multiple of 10 and adjust by 1. - Double and adjust.		e.g. There are 20 objects because there are 10 groups of 2.
$\begin{aligned} & \text { Year } \\ & 3 \end{aligned}$	- Add and subtract a group of small numbers e.g. $4-3+2$ - Add or subtract a two - digit number to or from a multiple of 10 $\text { e.g. } 60+28,72-40$ - Add and subtract two - digit numbers that don't bridge over a multiple of 10 . $\text { e.g. } 53+42,78-54$ - Add near doubles of numbers within 50. $\text { e.g. } 18+17,44+45$ - Count on and back in minutes and hours through 60 (analogue).		Double any multiple of 5 up to 100 e.g. double 35 - Halve any multiple of 10 up to 200. e.g. halve 170 - Multiply one-digit and two-digit numbers by 10 and 100 . e.g. $7 \times 10,7 \times 100,46 \times 10$, 46×100 - Find unit fractions of quantities. This should include: Halves, thirds, quarters, fifths and tenths	- Partition: double the tens and ones separately and then recombine - Halve the hundreds, tens and ones separately and recombine. - Recognise that finding a unit fraction is the equivalent of dividing by the denominator. - Recognise that halving and doubling are inverse operations. - Use knowledge of division facts. - Recognise that when a number is

				multiplied by 10 or 100 the digits move one or two places to the left and 0 is used as a placeholder.
$\begin{aligned} & \text { Year } \\ & 4 \end{aligned}$	- Add any pair of 2 digit numbers that cross the 10 and 100 boundary. $\text { e.g. } 38+76,83-26$ - Add or subtract a near multiple of 10 $\text { e.g. } 34+39,87-49$ - Add near doubles of any 2 digit numbers $\text { e.g. } 66+67,72+73$ - Add or subtract two - digit and three - digit multiples of ten $\text { e.g. } 120-40,230+320$ - Count on and back in minutes and hours through 60 (analogue and digital)	- Count on or back in hundreds, tens or ones. - Partition: Add tens and ones separately and then recombine. - Partition: Subtract tens and then ones E.g. If you subtract 34 , subtract 30 and then 4. - Subtracting by counting up from the smaller number to the larger number. - Add or subtract a near multiple of 10 and then adjust. e.g. $34+39=34+40$ - 1 $87-49=87-50+1$ - Double and adjust. - Use knowledge of place value e.g. 120-40 use 12 $4=8$	- Double any two-digit number. e.g. double 37 - Double and halve any multiple of 10 and 100 e.g. double or half of 800 , double or half of 420 . - Halve any even number to 200. - Find unit fractions and simple non-unit fractions of quantities. e.g. $1 / 8$ of $32,4 / 8$ of 32 , - Multiply and divide numbers to 1000 by 10 and 100 (answers with whole numbers only) e.g. $456 \times 10,800$ divided by $10,42 \times 100$ - Multiply a multiple of 10 to a hundred by a one-digit number. e.g. $60 \times 3,40 \times 4$ - Multiply numbers to 20 by a one-digit number. e.g. 19×4 - Identify the remainder when dividing by 2,5 and 10 - Give the factor pair of a number e.g. 6 has a factor pair of	

		$230+320$ use $23+32$	2 and 3.	
Year 5	- Add or subtract a pair of two-digit numbers or three-digit multiples of 10 . $\begin{aligned} & \text { e.g. } 30+90,360-240,220 \\ & +460 \end{aligned}$ - Add or subtract a near multiple of 10 or 100 to any two-digit or three-digit number. e.g. $34+39,87-49,432+$ 190, - Find the difference between two near multiples of 100 and 1000 (count up the difference by using a number line, bridge through multiples of 100). e.g. 6800-3040, 608-375 - Add or subtract any pairs of decimal fractions with ones and tenths. e.g. $5.6+2.6,6.5-3.8$ - Count on or back in minutes and hours bridging through 60 (analogue and digital times) e.g. mental jottings (time number line)	- Count on or back in hundreds, tens, ones and tenths. - Partition: Add hundreds, tens and ones separately and then recombine. - Subtract by counting up from a smaller to a larger number (only when it is the most efficient method). - Add or subtract a multiple of 10 or 100 and adjust.	- Multiply any two-digit number by 4 and 8 . e.g. $32 \times 4,88$ divided by 8 - Multiply two-digit numbers by 5 or 20 using doubling or halving. e.g. $42 \times 20,36 \times 5$ - Multiply by 25 and 50. $\text { e.g. } 42 \times 25,36 \times 50$ - Double of 3 digit multiples of 10 to 500 and corresponding halves. e.g. $240 \times 2,480$ divided by 2 - Find remainders when dividing a 2 digit number by a single digit number. e.g. 34 divided by $8=4$ R2 - Multiply and divide whole numbers and decimals by 10,100 or 1000. e.g. $7.2 \times 1000,68$ divided by $100,4.2 \times 10$ - Multiply a pair of multiples of 10 and a multiply a multiple of 100 by a single digit. e.g. $40 \times 60,400 \times 8$ - Divide a multiple of 10 by a single digit number (whole number answers only) e.g. 320 divided by 4. - Find fractions of whole numbers or quantities.	- Multiply or divide by 4 or 8 by repeated doubling and halving. - Form an equivalent calculation e.g. Multiply by 5 by multiplying by 10 and halving. Multiply by 20 by doubling and times by ten. - Use knowledge of doubles and halves and place value. E.g. When you multiply by 50, multiply by 100 and halve the answer. - Use knowledge of division facts when finding a remainder. - Use understanding that when you multiply or divide a number by 10 and 100 , its digits move 1 or 2 places to the left or right. - Use knowledge of multiplication and division facts and understanding of place value

			e.g. $3 / 8$ of $64,2 / 3$ of 30 - Find 10,25 and 50% of whole numbers and quantities. e.g. 10% of $80,25 \%$ of 80 - Factor pairs of numbers to 100 e.g. 42 has factor pairs of: 42 and 1 21 and 2 14 and 3 7 and 6	when calculating with multiples of 10 . Use knowledge of equivalence between fractions and percentages. $50 \%=1 / 2$ $25 \%=1 / 4$ $10 \%=1 / 10$ - Use knowledge of multiplication and division facts to find factor pairs. Factor Pairs What are al the numbers you can multiply together to get your target number? Target Number $=36$ $1,2,3,4,6$, $9,12,18,36$ This can be done by creating factor rainbows.
$\begin{aligned} & \text { Year } \\ & 6 \end{aligned}$	- Add or subtract a pair of decimals with ones, tenths or hundredths. $\text { e.g. } 0.7+3.36$ - Find doubles of decimals each with ones and tenths $\text { e.g. } 1.2+1.2$ - Add near doubles of decimals. e.g. 1.6 + 1.7 - Add or subtract a decimal with ones and tenths, that is nearly a whole number.	- Count on or back in hundreds, tens, ones, tenths and hundredths. . - Use knowledge of place value and related calculations e.g. $4.7+5.6,470+$ 560, $0.56+0.47$ can be worked out using $47+56$ - Use knowledge of place value	- Multiply pairs of two-digit and single-digit numbers. e.g. 28×3 - Divide a two-digit number by a single-digit number e.g. 68 divided by 4. - Divide by 25 or 50 . e.g. 480 divided by 25 , 2700 divided by 50 - Double decimals with ones and tenths and the corresponding halves. e.g. double 7.6, half of	- Use partitioning and distributive law to divide tens and ones separately. e.g. 92 divided by $4=$ $(80+12)$ divided by 4 $=20+3=23$ - Form equivalent calculations. e.g. To divide by 25 , divide by 100 and multiply by 4. To divide by 50 , divide by 100 and then

The Teaching of Fluency at St Barnabas

It is important that fluency is taught and we don't just rely on the children picking it up. Fluency is only achieved when the children are able to select the most appropriate method for the task in hand. In order to achieve this, they need to be exposed to multiple contexts and have the opportunity to apply their skills. At St Barnabas, we will tackle this by providing mental maths sessions little and often following the format below:

Discuss - Expose the children to questions and allow them to discuss their mental strategies with each other. Because children all approach mental calculations differently, it gives them the opportunity to share different ways of thinking and seeing a calculation.

Teach/Make it meaningful - Support children to make connections between their known facts from previous year groups and the new mental calculations they have been exposed to (through modelling and manipulatives). To ensure the facts are meaningful, teach alongside conceptual understanding.

Mental maths practice - Make sure the children have the opportunity to practise the mental strategies that they have learnt. This could be timed testing, but this is only recommended when the children have taken part in the previous 3 stages. Do not set the children up to fail! If they are likely to succeed, the more they will enjoy maths and the more motivated they will be in future lessons.

Helpful Resources

Other Resources
White Rose Maths ' 1 -Minute Maths' app
TT Rockstars https://ttrockstars.com/
Topmarks https://www.topmarks.co.uk/maths-games/7-11-years/mental-maths Mathsframe https://mathsframe.co.uk/en/resources/category/22/most-popular

