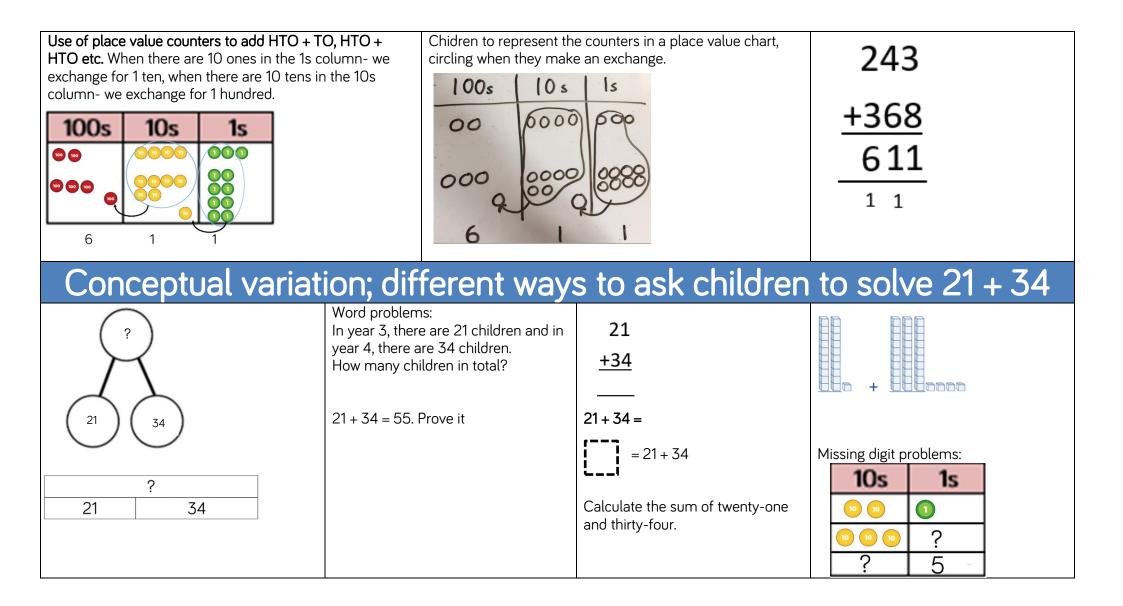
## Calculation policy: Guidance

|             | EYFS/Year 1                                                                                                    | Year 2                                        | Year 3                                             | Year 4                         | Year 5                                                                                                                              | Year 6                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|             | Combining two parts<br>to make a whole: part<br>whole model.                                                   | Adding three single digits.                   | Column method-<br>regrouping.                      | Column method-<br>regrouping.  | Column method-<br>regrouping.                                                                                                       | Column method-<br>regrouping.                                                                              |
| Addition    | Starting at the bigger<br>number and counting<br>on- using cubes.<br>Regrouping to make<br>10 using ten frame. | Use of base 10 to<br>combine two<br>numbers.  | Using place value<br>counters<br>(up to 3 digits). | (up to 4 digits)               | Use of place value<br>counters for<br>adding decimals.                                                                              | Abstract methods.<br>Place value counters<br>to be used for<br>adding decimal<br>numbers.                  |
|             | Taking away ones<br>Counting back                                                                              | Counting back<br>Find the difference          | Column method with regrouping.                     | Column method with regrouping. | Column method with regrouping.                                                                                                      | Column method with regrouping.                                                                             |
| Subtraction | Find the difference<br>Part whole model<br>Make 10 using the<br>ten frame                                      | Part whole model<br>Make 10<br>Use of base 10 | (up to 3 digits<br>using place value<br>counters)  | (up to 4 digits)               | Abstract for whole<br>numbers.<br>Start with place<br>value counters for<br>decimals- with the<br>same amount of<br>decimal places. | Abstract methods.<br>Place value counters<br>for decimals- with<br>different amounts of<br>decimal places. |

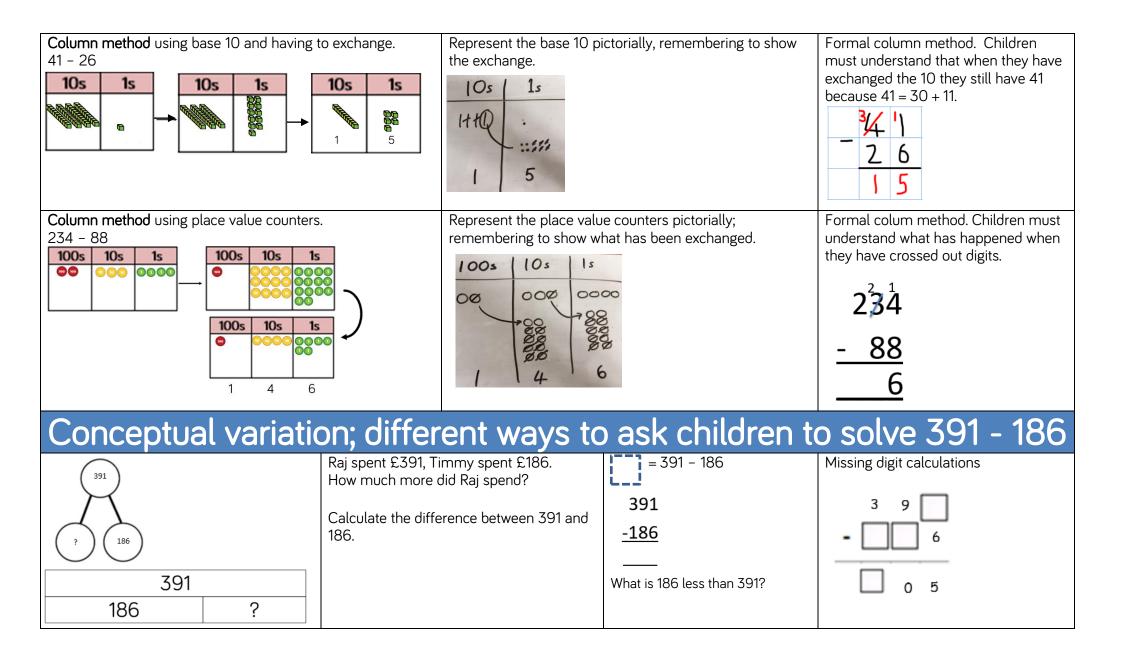

| Multiplication | Recognising and<br>making equal groups.<br>Doubling<br>Counting in multiples<br>Use cubes, Numicon<br>and other objects in<br>the classroom                                                 | Arrays- showing<br>commutative<br>multiplication                                                              | Arrays<br>2d × 1d using base<br>10                                                                                                                                              | Column<br>multiplication-<br>introduced with place<br>value counters.<br>(2 and 3 digit<br>multiplied by 1 digit) | Column<br>multiplication<br>Abstract only but<br>might need a<br>repeat of year 4<br>first(up to 4 digit<br>numbers<br>multiplied by 1 or 2<br>digits) | Column<br>multiplication<br>Abstract methods<br>(multi-digit up to 4<br>digits by a 2 digit<br>number)                                                                                    |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Division       | Sharing objects into<br>groups<br>Division as grouping<br>e.g. I have 12 sweets<br>and put them in<br>groups of 3, how<br>many groups?<br>Use cubes and draw<br>round 3 cubes at a<br>time. | Division as<br>grouping<br>Division within<br>arrays- linking to<br>multiplication<br>Repeated<br>subtraction | Division with a<br>remainder-using<br>lollipop sticks,<br>times tables facts<br>and repeated<br>subtraction.<br>2d divided by 1d<br>using base 10 or<br>place value<br>counters | Division with a<br>remainder<br>Short division (up to 3<br>digits by 1 digit-<br>concrete and pictorial)          | Short division<br>(up to 4 digits by a<br>1 digit number<br>including<br>remainders)                                                                   | Short division<br>Long division with<br>place value counters<br>(up to 4 digits by a 2<br>digit number)<br>Children should<br>exchange into the<br>tenths and<br>hundredths column<br>too |

## Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

| Concrete                                                                                            | Pictorial                                                                                                  | Abstract                                                                                                                     |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars). | Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. | 4 + 3 = 7<br>Four is a part, 3 is a part and the whole<br>is seven.                                                          |
| Counting on using number lines using cubes or Numicon.                                              | A bar model which encourages the children to count on, rather than count all.                              | The abstract number line:<br>What is 2 more than 4?<br>What is the sum of 2 and 4?<br>What is the total of 4 and 2?<br>4 + 2 |

| Regrouping to make 10; using ten frames and counters/cubes or using Numicon.<br>6 + 5                   | Children to draw the ten frame and counters/cubes.                                                                                    | Children to develop an understanding<br>of equality e.g.<br>$6 + \Box = 11$<br>$6 + 5 = 5 + \Box$<br>$6 + 5 = \Box + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO + O using base 10. Continue to develop understanding of partitioning and place value.<br>41 + 8      | Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.                                                       | $41+8 = 9 \\ 40+9=49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 49 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 9 = 40 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 + 10 \\ 40 $ |
| TO + TO using base 10. Continue to develop<br>understanding of partitioning and place value.<br>36 + 25 | Chidlren to represent the base 10 in a place value chart.<br>$ \begin{array}{c c} 10s & 1s \\ \hline 111 & \hline 6 & 1 \end{array} $ | Looking for ways to make 10.<br>36 + 25 = 30 + 20 = 50<br>5 + 5 = 10<br>50 + 10 + 1 = 61<br>1 5 36<br>Formal method: $\frac{+25}{61}$<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |




### Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

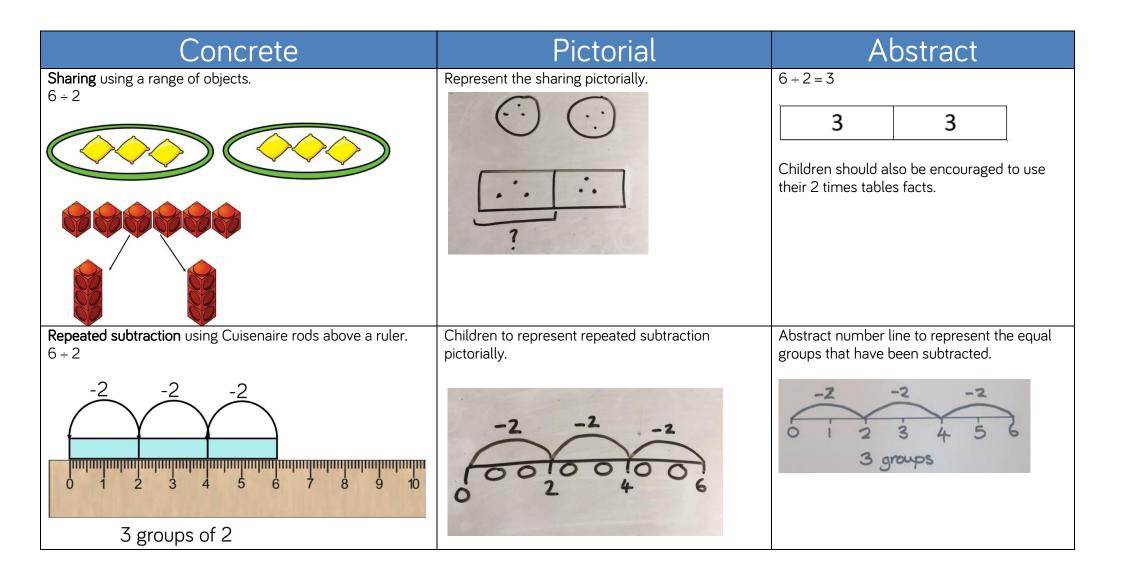
| Concrete                                                                                                                              | Pictorial                                                                                                                      | Abstract                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). | Children to draw the concrete resources they are using<br>and cross out the correct amount. The bar model can<br>also be used. | 4-3=                                                                                                                                                 |
| 4 - 3 = 1                                                                                                                             | XXXX<br>XXX                                                                                                                    | 4<br>3?                                                                                                                                              |
| <ul> <li>Counting back (using number lines or number tracks) children start with 6 and count back 2.</li> <li>6 - 2 = 4</li> </ul>    | Children to represent what they see pictorially e.g.                                                                           | Children to represent the calculation<br>on a number line or number track and<br>show their jumps. Encourage children<br>to use an empty number line |
| 1         2         3         4         5         6         7         8         9         10                                          | 12345678910                                                                                                                    | 012345678910                                                                                                                                         |
|                                                                                                                                       |                                                                                                                                | 46                                                                                                                                                   |

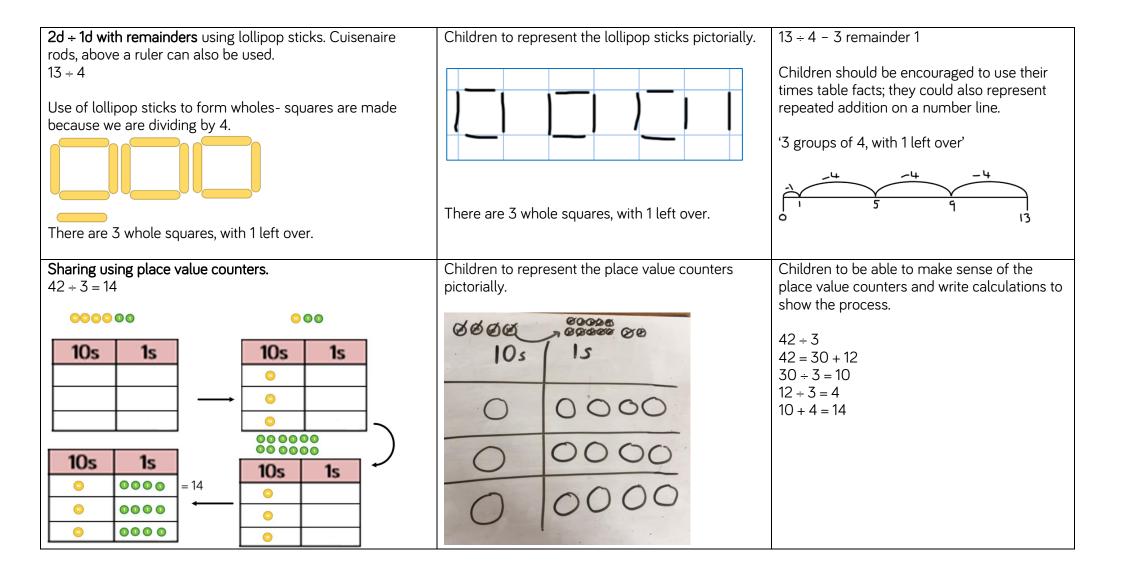
| Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).<br>Calculate the difference between 8 and 5. | Children to draw the cubes/other concrete objects which<br>they have used or use the bar model to illustrate what<br>they need to calculate. | Find the difference between 8 and 5.<br>8 – 5, the difference is<br>Children to explore why<br>9 - 6 = 8 – 5 = 7 – 4 have the same<br>difference. |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Making 10 using ten frames.<br>14 - 5<br>-4 - 1<br>-4 - 1<br>-4 - 1<br>-4 - 1                                                                  | Children to present the ten frame pictorially and discuss what they did to make 10.                                                          | Children to show how they can make<br>10 by partitioning the subtrahend.<br>$14 - 5 = 9$ $4 \qquad 1$ $14 - 4 = 10$ $10 - 1 = 9$                  |
| Column method using base 10.<br>48-7<br>10s 1s<br>48-7<br>4<br>4<br>4<br>1                                                                     | Children to represent the base 10 pictorially.                                                                                               | Column method or children could<br>count back 7.<br>4 8<br>- 7<br>4 1                                                                             |



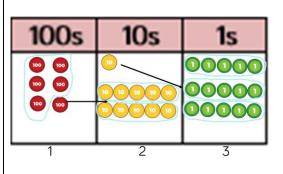
### Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.


| Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pictorial                                                                       | Abstract                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Repeated grouping/repeated addition<br>$3 \times 4$<br>4 + 4 + 4<br>There are 3 equal groups, with 4 in each group.<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>intermation<br>i | Children to represent the practical resources in a picture and use a bar model. | 3 × 4 = 12<br>4 + 4 + 4 = 12                                       |
| Number lines to show repeated groups-<br>3 × 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Represent this pictorially alongside a number line e.g.:                        | Abstract number line showing three jumps<br>of four.<br>3 × 4 = 12 |
| Cuisenaire rods can be used too.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000010000100001<br>0 4 8 12                                                    | 0 4 8 12                                                           |


| Use arrays to illustrate commutativity counters and other<br>objects can also be used.<br>$2 \times 5 = 5 \times 2$<br>2 lots of 5 5 lots of 2 | Children to represent the arrays pictorially.                                                                                                                                           | Children to be able to use an array to write a<br>range of calculations e.g.<br>$10 = 2 \times 5$ $5 \times 2 = 10$ $2 + 2 + 2 + 2 + 2 = 10$ $10 = 5 + 5$                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partition to multiply using Numicon, base 10 or Cuisenaire rods.<br>$4 \times 15$                                                              | Children to represent the concrete manipulatives pictorially. $ \begin{array}{c c} \hline 0 & 1 \\ \hline 0 & 1 \\ \hline 0 & 1 \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline \end{array} $ | Children to be encouraged to show the steps<br>they have taken.<br>$4 \times 15$<br>10 5<br>$10 \times 4 = 40$<br>$5 \times 4 = 20$<br>40 + 20 = 60<br>A number line can also be used<br>40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + |
| Formal column method with place value counters<br>(base 10 can also be used.) 3 × 23                                                           | Children to represent the counters pictorially.<br>10s 1s<br>00 000<br>00 000<br>00 000<br>6 9                                                                                          | Children to record what it is they are doing<br>to show understanding.<br>$3 \times 23$ $3 \times 20 = 60$<br>$/ \ 3 \times 3 = 9$<br>$20 \ 3 \ 60 + 9 = 69$<br><b>23</b><br>$\times 3$<br><u>69</u>                             |

| Formal column method with place value counters.         6 x 23       100s       1s         100s       10s       1s         10s       1s       1s | e.g. the image below.                             | he counters/base 10, pictorially                                                                                                                                                                                                        | Formal written method<br>$6 \times 23 =$<br>23<br>$\times 6$<br>138<br>1 1<br>$1 \times 4$<br>$\times 26$<br>$-7 \times 4$<br>$2 \times 6$<br>$-7 \times 4$<br>$2 \times 6$<br>$-7 \times 4$<br>$2 \times 4$<br>$2 \times 6$<br>$-7 \times 4$<br>$3 \times 2 \times 4$<br>$-7 \times 4$<br>$3 \times 2 \times 4$<br>$-7 \times 4$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23       23       23       23       23       a week.         How many l       one week?         ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wim 23 lengths, 6 times<br>engths did she swim in | /s to ask childr<br>Find the product of 6 and 23<br>$6 \times 23 =$<br>$6 \times 23$<br>$6 \times 23$<br>$6 \times 23$<br>$6 \times 23$<br>$6 \times 23$<br>$6 \times 23$<br>$5 \times 23$<br>$6 \times 23$<br>$\times 23 \times 6$<br> | Image: Second system       Image: Second system         Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


#### Calculation policy: Division

Key language: share, group, divide, divided by, half.



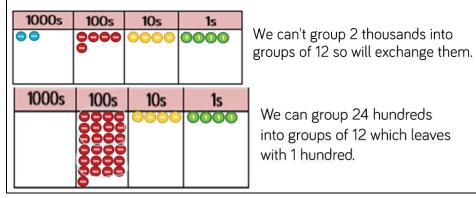


**Short division** using place value counters to group. 615 ÷ 5

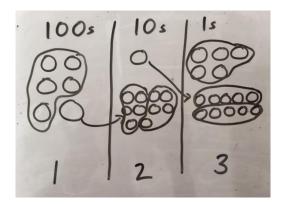


1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?


3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?


5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

**Long division** using place value counters 2544 ÷ 12



Represent the place value counters pictorially.



Children to the calculation using the short division scaffold.

# <u>123</u> 5<sup>6</sup>1<sup>1</sup>5

| 1000s | 100s 10s | 1s | After exchanging the hundred, we 12 $2544$<br>have 14 tens. We can group 12 tens 24<br>into a group of 12, which leaves 2 tens. 14<br>12 $2544241412$ $2544241412$ $25441412$ $25441412$ $25441412$ $25441412$ $25441412$ $25441412$ $254414$ $12$ $254414$ $12$ $254414$ $12$ $254414$ $12$ $2544$ |
|-------|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000s | 100s 10s |    | After exchanging the 2 tens, we 12 2544<br>have 24 ones. We can group 24 ones 24<br>into 2 group of 12, which leaves no remainder. 14<br>22<br>24<br>24<br>24<br>24<br>0                                                                                                                            |

### Conceptual variation; different ways to ask children to solve $615 \div 5$

| Using the part whole model below, how can you divide 615 by 5 without using short division? | I have £615 and share it equally<br>between 5 bank accounts. How much<br>will be in each account? | 5 615                  | What is the calculation?<br>What is the answer? |     |                                      |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|-----|--------------------------------------|
| 615<br>500 100 15                                                                           | 615 pupils need to be put into 5<br>groups. How many will be in each<br>group?                    | 615 ÷ 5 =<br>= 615 ÷ 5 | 100s                                            | 10s | <b>1s</b><br>00000<br>00000<br>00000 |