

Key Stage 1 and 2

Key Substantive Knowledge Carried Forward (subject knowledge)

	Living things and	Animals, including	Evolution and	Properties and changes of	Light	Electricity	Earth and space	Forces
	their habitats	humans	inheritance	materials				
Year 5	describe the differences in the life	describe the changes as humans develop to old age.		compare and group together everyday materials on the basis of their properties			describe the movement of the Earth, and other planets,	
	cycles of a mammal,			know that some materials will dissolve in			relative to the Sun in the solar	
	incost and a bird			liquid to form a solution			describe the movement of the	
	describe the life			decide how mixtures might be separated			Moon relative to the Earth	
	process of			including through filtering sieving and			describe the Sun Earth and	
	reproduction in some			evaporating			Moon as approximately	
	plants and animals			give reasons, based on evidence from			spherical bodies	
				comparative and fair tests, for the particular			use the idea of the Earth's	
				uses of everyday materials, including metals,			rotation to explain day and	
				wood and plastic			night and the apparent	
				demonstrate that dissolving, mixing and			movement of the sun across	
				changes of state are reversible changes			the sky.	
				explain that some changes result in the				
				formation of new materials, and that this kind				
				of change is not usually reversible, including				
				changes associated with burning and the				
				action of acid on bicarbonate of soda.				
Year 6	describe how living	identify and name the main	recognise that living		recognise that light appears to	associate the		explain that unsupported
	things are classified	parts of the numan	things have changed over		travel in straight lines explain	brightness of a lamp		objects fail towards the Earth
	Into broad groups	circulatory system, and	time and that fossils		that objects are seen because	or the volume of a		because of the force of gravity
	according to common	the heart blood vessels and	about living things that		into the eve	pumber and voltage		the falling object
	characteristics and	blood	inhabited the Farth		we see things because light	of cells used		identify the effects of air
	based on similarities	recognise the impact of	millions of years ago		travels from light sources to	compare variations		resistance water resistance
	and differences.	diet, exercise, drugs and	recognise that living		our eves or from light sources	in how components		and friction, that act between
	including	lifestyle on the way their	things produce offspring		to objects and then to our	function, use		moving surfaces
	microorganisms,	bodies function describe	of the same kind, but		eyes	recognised symbols		recognise that some
	plants and animals	the ways in which nutrients	normally offspring vary		light travels in straight lines	when representing a		mechanisms, including levers,
	give reasons for	and water are transported	and are not identical to		to explain why shadows have	simple circuit in a		pulleys and gears, allow a
	classifying plants and	within animals, including	their parents		the same shape as the objects	diagram.		smaller force to have a greater
	animals based on	humans.	identify how animals and		that cast them.			effect.
	specific		plants are adapted to suit					
	characteristics.		their environment in					
			different ways and that					
			adaptation may lead to					
		1	evolution.		1		1	

Key Disciplinary Knowledge Carried Forward (methods/framework to establish knowledge)

- planning different types of scientific enquiries to answer questions, including recognising and controlling variables where necessary
- taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate
- recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs
- using test results to make predictions to set up further comparative and fair tests
- reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results, in oral and written forms such as displays and other presentations
- identifying scientific evidence that has been used to support or refute ideas or arguments

Mapping Substantive Knowledge and Concepts Through Our Science Curriculum

KS3

Forces	Speed	Gravity	Contact forces	Pressure
Electromagnets	Voltage and resistance	Current	Electromagnets	Magnetism
Energy	Energy costs	Energy transfer	Work	Heating and cooling
Waves	Sound	Light	Wave effects	Wave properties
Matter	Particle model	Separating mixtures	Periodic table	Elements
Reactions	Metals and non-metals	Acids and alkalis	Chemical energy	Types of reaction
Earth	Earth structure	Universe	Climate	Earth resources
Organisms	Movement	Cells	Breathing	Digestion
Ecosystem	Interdependence	Plant reproduction	Respiration	Photosynthesis
Genes	Variation	Human reproduction	Evolution	Inheritance

KS4

K in biology:

- life processes depend on molecules whose structure is related to their function
- the fundamental units of living organisms are cells, which may be part of highly adapted structures including tissues, organs and organ systems, enabling living processes to be performed effectively
- living organisms may form populations of single species, communities of many species and ecosystems, interacting with each other, with the environment and with humans in many different ways
- living organisms are interdependent and show adaptations to their environment
- life on Earth is dependent on photosynthesis in which green plants and algae trap light from the Sun to fix carbon dioxide and combine it with hydrogen from water to make organic compounds and oxygen
- organic compounds are used as fuels in cellular respiration to allow the other chemical reactions necessary for life
- the chemicals in ecosystems are continually cycling through the natural world
- the characteristics of a living organism are influenced by its genome and its interaction with the environment
- evolution occurs by a process of natural selection and accounts both for biodiversity and how organisms are all related to varying degrees.

Key ideas in chemistry:

- matter is composed of tiny particles called atoms and there are about 100 different naturally occurring types of atoms called elements
- elements show periodic relationships in their chemical and physical properties
- these periodic properties can be explained in terms of the atomic structure of the elements
- atoms bond by either transferring electrons from one atom to another or by sharing electrons
- the shapes of molecules (groups of atoms bonded together) and the way giant structures are arranged is of great importance in terms of the way they behave
- there are barriers to reaction so reactions occur at different rates
- chemical reactions take place in only three different ways:
- proton transfer
- electron transfer
- electron sharing

• energy is conserved in chemical reactions so can therefore be neither created or destroyed

Key ideas in physics:

- the use of models, as in the particle model of matter or the wave models of light and of sound
- the concept of cause and effect in explaining such links as those between force and acceleration, or between changes in atomic nuclei and radioactive emissions
- the phenomena of 'action at a distance' and the related concept of the field as the key to analysing electrical, magnetic, and gravitational effects
- that differences, for example between pressures or temperatures or electrical potentials, are the drivers of change
- that proportionality, for example between weight and mass of an object or between force and extension in a spring, is an important aspect of many models in science
- that physical laws and models are expressed in mathematical form.

Mapping Disciplinary Knowledge Through Our Science Curriculum

Disciplinary KS3

Disciplinary KS4

	Methods to answer scientific questions	Apparatus and techniques, including measurement	Analysis, presentation and evaluation of sci- entific data to draw valid conclusions	Development of scientific knowledge over time and its implications
KS3	 Select, plan and carry out the most appro- priate types of sci- entific enquiries to test predictions. Identify independent, dependent and con- trol variables. Apply sampling techniques. 	 Use appropriate tech- niques, apparatus and materials during field- work and laboratory work, paying attention to health and safety. 	 Pay attention to objec- tivity and concern for accuracy, precision, re- peatability, reproducibil- ity. Explain data in rela- tion to predictions and hypotheses. 	 Understand that scientific theories are modified to take account of new evidence. Understand importance of publishing results and peer review.
KS4	2.1 hypotheses2.2 planning/variables2.5 sampling technique2.7 evaluate methods	 2.3 technique, select apparatus 2.4 use apparatus 2.6 record 	3.1 present 3.2 translate 3.3 maths 3.4 distributions 3.5 interpret 3,6 explain 3.7 objectivity	 1.1 methods theories 1.2 models 1.3 limitations ethics 1.4 applications 1.5 application risk 1.6 peer review

Scientific vocabulary, quantities, units, symbols and nomenclature

WS 4.1 Use scientific vocabulary, terminology and definitions.

WS 4.2 Recognise the importance of scientific quantities and understand how they are determined.

WS 4.3 Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate.

WS 4.4 Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano).

WS 4.5 Interconvert units.

WS 4.6 Use an appropriate number of significant figures in calculation.

Physics

Concept	Forces	Electromagnets	Energy	Waves
Unit Titles	1.1 Introduction to Forces	2.1 Potential difference and resistance	3.1 Energy Costs	4.1 Sound
	1.2 Gravity	2.2 Current	3.2 Energy transfer	4.2 Light
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	How forces affect the movement of an object	The relationship between current and potential difference in series and parallel circuits	How electricity is generated and how it is used in the home.	The properties of longitudinal and transvers waves
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the	If the overall, resultant force on an object is non-zero, its motion changes.	In a series circuit, voltage is shared between each component where current is the same.	Domestic electricity usage is based on the amount of energy transferred.	Sound consists of vibrations which travel as a longitudinal wave through substances.
composite idea for that unit)	Mass and weight are different but related. Weight depends upon mass but also on gravitational field	In a parallel circuit, voltage is the same across each loop. Current divides between loops	Electricity is generated by a combination of resources which each have advantages and disadvantage.	When a light ray meets a different medium, some of it is absorbed and some reflected.
	strength. Every object exerts a gravitational	Current is a movement of electrons An electromagnet uses the principle that a current through a wire causes a	Calculate the cost of home energy usage. Describe how work gets done using	For a mirror, the angle of incidence equals the angle of reflection.
	force on every other object.	magnetic field	an energy model.	The ray model can describe the formation of an image in a mirror

	Gravity holds planets and moons in orbit around larger bodies.			and how objects appear different colours.
Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)	Use Newton meter Distance time graphs investigate variables on the speed of a toy car rolling down a slope Investigate how pressure from your foot onto the ground varies with different footwear	Set up and use correctly electrical components Compare the voltage drop across resistors Compare and explain current flows in different parts of a parallel circuit	Compare the running costs of light bulbs Explain the energy transfers in a series of everyday items	Use ray boxes correctly Measure angles of incidence and reflection
Examples of Reading Opportunity	Reading of class text book.	Reading of class text book.	Reading of class text book.	Reading of class text book.
Examples of Key Tier 2 Vocabulary	Distance	Parallel series	Resource Calculate	travel
Examples of Key Tier 3 Vocabulary	Speed Weight Mass Orbit Newton	Current Potential difference Ohm	Efficiency transfer	Incidence Reflection
Examples of Numeracy	Using speed, weight and pressure equations	Calculating current, potential difference and resistance.	Calculating the cost of electricity used	Measuring angles

Physics

Concept	Forces	Electromagnets	Energy	Waves
Unit Titles	1.3 Contact forces	2.3 Magnetism	3.3 Energy costs	4.3 Wave effects
	1.4 Pressure	2.4 Electromagnets	3.4 Heating and cooling	4.4 Wave properties
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	The effect of forces on the motion of an object	State what determines the strength of an electromagnet and describe uses of them.	Describe how energy is transferred	What ultrasound is and how we use it. What damage electromagnetic radiation does to the human body

Examples of Key Substantive Knowledge	If the overall, resultant force on an object is non-	We can describe how	Work is done and	When a wave travels through a
(manific subject language relied upon for	zero, its motion changes	jobs get done using an	energy transferred	substance, particles move to and
(specific subject knowledge relied upon for	Mass and weight are different but related.	energy model where	when a force moves	from.
later study or to grasp the composite idea		energy is transferred	an object.	Energy is transferred in the
for that unit)	Mass and weight are different but related	from one store at the	Machines and levers	direction of movement of the
		start to another at the	make work easier by	wave.
	Every object exerts a gravitational force on every	end.	reducing the force	
	other object	When energy is	needed.	Energy is transferred in the
		transferred, the total is		direction of movement of the
	Gravity holds planets and moons in orbit around	conserved, but some	Machines and levers	wave.
	larger hodies	energy is dissipated.	make work easier by	
		reducing the useful	reducing the force	Waves of higher amplitude or
	Gravity holds planets and moons in orbit around	energy	needed.	higher frequency transfer more
	larger hodies			energy.
		When energy is	The thermal energy	A physical model of a transverse
	When the resultant force on an object is zero, it is	transferred, the total is	of an object depends	wave demonstrates it moves from
	in equilibrium and does not move, or remains at	conserved, but some	upon its mass.	place to place, while the material
	constant speed in a straight line	energy is dissipated.	temperature and	it travels through does not. and
	constant speed in a straight line.	reducing the useful	what it's made of.	describes the properties of speed.
	One effect of a force is to change an object's form	energy		wavelength and reflection.
	causing it to be stretched or compressed		When there is a	
	causing it to be stretched of compressed.	Magnetic materials.	temperature	
		electromagnets and the	difference, energy	
		Earth create magnetic	transfers from the	
		fields which can be	hotter to the cooler	
		described by drawing	obiect.	
		field lines to show the		
		strength and direction.	When there is a	
			temperature	
			difference, energy	
			transfers from the	
			hotter to the cooler	
			object.	
			-	
			Thermal energy is	
			transferred through	
			different pathways,	
			by particles in	
			conduction and	

			convection, and by radiation.	
Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)	Using newton meters Investigate factors that affect the size of frictional or drag forces Investigate how pressure from your foot onto the ground varies with different footwear	Students build and test electromagnets. Students investigate the properties of magnets	Students complete experiments to calculate work done. Results are recorded and then used in calculations. Students complete various experiments to investigate conduction convection and radiation. Results are recorded and then analysed.	
Examples of Reading Opportunity	Text books	Reading of class text book.	Reading of class text book.	Reading of class text book.

Examples of Key Tier 2 Vocabulary	investigate	Transfer strength	Between	High Low
Examples of Key Tier 3 Vocabulary	Friction Gravity Resultant	electromagnet	Conservation Insulation	Reflect Frequency
Examples of Numeracy	Calculating resultant forces. Calculating speed Drawing distance-time graphs	Calculating resistance	Calculating efficiency	Calculating the speed of sound

Physics

Concept	Forces	Electro magnets	Energy		Waves
Unit Title			6.1 Energy	6.4 Atomic structure	
Comprising of (use spec subtitle main sections, not subsections, indicate chem only or subsections that are chem only – see AN exmample)			6.1.1 Energy changes in a system, and the ways energy is stored before and after such changes6.1.2 Conservation and dissipation of energy6.1.3 National and global energy resources	6.4.1 Atoms and isotopes 6.4.2 Atoms and nuclear radiation	
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)			Students should be able to calculate the amount of energy associated with a moving object, a stretched spring and an object raised above ground level. 6.1.2 Conservation and dissipation of energy Students should be able to describe with examples where there are energy transfers in a closed system, that there is no net change to the total energy. 6.1.3 National and global energy resources Students should be able to: • describe the main energy sources available • distinguish between energy resources that are renewable and energy resources that are non-renewable • compare ways that different energy resources are used, the uses to include transport, electricity generation and heating • understand why some energy resources are more reliable than others	Students should be able to explain the concept of half-life and how it is related to the random nature of radioactive decay	

Examples of Key Substantive	6.1.1 Energy changes in a system, and the ways energy	The basic structure of an atom is a positively charged nucleus	
Knowledge (specific subject knowledge	is stored before and after such changes	composed of both protons and neutrons surrounded by negatively	
Knowledge (specific subject knowledge		charged electrons.	
relied upon for later study or to grasp	Energy changes in a system, and the ways energy is	All atoms of a particular element have the same number of protons.	
the composite idea for that unit)	stored before and after such changes	The number of protons in an atom of an element is called its atomic	
the composite idea for that diffy	I nroughout this section on Energy students should be	number. The total number of protons and neutrons in an atom is	
	able to calculate the changes in energy involved when a	Called its mass number Students should be able to relate differences between isotones to	
	• work done when a surrent flows Te use calculations	differences in conventional corresontations of their identities	
	to show on a common scale how the overall energy in a	charges and masses	
	system is redistributed when the system is changed	Students should be able to describe the difference between the	
	kinetic energy = $0.5 \times \text{mass} \times \text{s peed}$	plum pudding model of the atom and the nuclear model of the	
		atom.	
		Activity is the rate at which a source of unstable nuclei decays.	
	Conservation and dissipation of energy	Required knowledge of the properties of alpha particles, beta	
		particles and gamma rays is limited to their penetration through	
	National and global energy resources	materials, their range in air and ionising power.	
		Nuclear equations are used to represent radioactive decay	
		Students should be able to determine the half-life of a radioactive	
	The changes involved in the way energy is stored when	isotope from given information.	
	a system changes.		
	Calculations to include work done by forces and when a		
	current flows kinetic energy, gravitational potential		
	energy		
	The distribution of energy in a system		
	The specific heat capacity of a substance		
	Describe the main energy resources available for use on		
	Earth		
	Working critically with primary and secondary		
	evidence:		
	What is the best type of insulation to use in the home?		
	what is the best type of insulation to use in the nome?		
Separate Science Key Substantive		Background radiation is around us all of the time. It comes from: •	
Knowledge		natural sources such as rocks and cosmic rays from space • man-	
Knowledge		made sources such as the fallout from nuclear weapons testing and	
		nuclear accidents. The level of background radiation and radiation	
		does is maximal in signarts (Sy) 1000 millicionarts (mSy) = 1 signart	
		(S_{1})	
		Nuclear radiations are used in medicine for the: • exploration of	
		internal organs • control or destruction of unwanted tissue	
		Nuclear fission is the splitting of a large and unstable nucleus (eg	
		uranium or plutonium).	

		Nuclear fusion is the joining of two light nuclei to form a heavier nucleus. In this process some of the mass may be converted into the energy of radiation	
Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)	Plan and carry out an investigation to find out which type of insulation will reduce heat loss the most.		
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down)	Required practical activity 14: an investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.		
Examples of Reading Opportunity	Reading of class text book.	Reading of class text book.	
Examples of Key Tier 2 Vocabulary	Transfer Specific	Release Absorb	
Examples of Key Tier 3 Vocabulary	Conservation Capacity	Absorbtion Emit	
Examples of Numeracy	Pupils need to be able to calculate work done and energy transferred. They need to be able to use and re-arrange the equations for potential and kinetic energy.	Pupils need to be able to calculate the half life of a substance. Pupils need to be able to complete radioactive decay equations.	

<u>Physics</u>

Concept	Forces	Electromagnets	Energy	<mark>Waves</mark>
Unit Title	6.5 Forces	6.2 Electricity	6.3 Particle model of matter	
Comprising Of (use	6.5.1 Forces and their interactions	6.2.1Current, potential difference and resistance	6.3.1 Changes of state and the particle model	
spec subtitle main	6.5.2 Work done and energy transfer	6.2.2 Series and parallel circuits	6.3.2 Internal energy and energy transfers	
soctions not	6.5.4 Forces and motion	6.2.3 Domestic uses and safety	6.3.3 Particle model and pressure	
Sections, not				
subsections,				
indicate chem only				
or subsection chem				
only-see AN				
example)				
Comnosite	6.5.1 Forces and their interactions	6.2.1Current, potential difference and resistance	Students should be able to describe how, when substances change state	
Knowlodgo/End	Students should be able to describe		(melt, freeze, boil, evaporate, condense or sublimate), mass is conserved.	
Rilowieuge/Ellu	the interaction between pairs of	Students should be able to draw and interpret circuit	Students should be able to distinguish between specific heat capacity and specific latent heat	
Point	object. The forces to be represented	Students should be able to explain that, for some	specific latent field.	
(big idea that	as vectors.	resistors, the value of R remains constant but that in	Students should be able to: • explain how the motion of the molecules in a	
should be	Students should be able to: • describe	others it can change as the current changes.	gas is related to both its temperature and its pressure • explain	
answered at the	isolated object or system	Students should be able to use graphs to explore	pressure at constant volume.	
end of a unit)	6.5.4 Forces and motion	whether circuit elements are linear or non-linear and	P	
	Students should be able to draw	relate the curves produced to their function and		
	distance-time graphs from measurements and extract and	properties.		
	interpret lines and slopes of distance–			
	time graphs, translating information			
	between graphical and numerical			
	IOTIII.			

Examples of Key	6.5.1 Forces and their interactions	6.2.1 Current, potential difference and resistance	The density of a material is defined by the equation: density = mass volume	
	Scalar quantities have magnitude only.	Circuit diagrams use standard symbols.	The particle model can be used to explain • the different states of matter •	
substantive	Vector quantities have magnitude and	Students should be able to draw and interpret circuit	differences in density.	
Knowledge	an associated direction.	diagrams	If the temperature of the system increases: The increase in temperature	
specific subject	contact forces – the objects are	Electric current is a flow of electrical charge. The size	depends on the mass of the substance heated, the type of material and the	
specific subject	physically touching • non-contact	of the electric current is the rate of flow of electrical	energy input to the system.	
knowledge relied	forces – the objects are physically senarated	the equation: charge flow – current x time	heat capacity x temperature change	
upon for later	Weight is the force acting on an object		The specific heat capacity of a substance is the amount of energy required	
tudy or to grach	due to gravity. The force of gravity	The current (I) through a component depends on	to raise the temperature of one kilogram of the substance by one degree	
study of to grasp	close to the Earth is due to the	both the resistance (R) of the component and the	Celsius.	
he composite idea	gravitational field around the Earth.	potential difference (V) across the component. The	The specific latent heat of a substance is the amount of energy required to	
or that unit)	The weight of an object depends on	greater the resistance of the component the smaller	change the state of one kilogram of the substance with no change in	
or that drift,	the gravitational field strength at the	the current for a given potential difference (pd)	temperature.	
	point where the object is.	across the component.	energy for a change of state = mass × specific latent heat	
	The weight of an object can be	Current, potential difference or resistance can be	6.3.3	
	calculated using the equation: weight	calculated using the equation: potential difference =	The molecules of a gas are in constant random motion. The temperature of	
	= mass × gravitational field strength	current × resistance	the gas is related to the average kinetic energy of the molecules	
	use free body diagrams to describe	success should be able to explain that, for some		
	forces lead to a resultant force on an	others it can change as the current changes		
	object including balanced forces	Students should be able to: WS 1.2.1.4. explain the		
	when the resultant force is zero.	design and use of a circuit to measure the resistance		
	6.5.2 Work done and energy transfer	of a component by measuring the current through,		
	When a force causes an object to	and potential difference across, the component		
	move through a distance work is done	draw an appropriate circuit diagram using correct		
	on the object. So a force does work on	circuit symbols.		
	an object when the force causes a			
	displacement of the object.			
	6.5.3 Forces and elasticity			
	Students should be able to: • give			
	examples of the forces involved in			
	object • explain why to change the			
	shape of an object (by stretching			
	bending or compressing), more than			
	one force has to be applied – this is			
	limited to stationary objects only •			
	describe the difference between			
	elastic deformation and inelastic			
	deformation caused by stretching			
	torces.			
	torce = spring constant × extension			
	6.5.4 Forces and motion			
	Distance is how far an object moves.			
	Distance does not involve direction.			
	Distance is a scalar quantity			
	measurements of distance and time			

	and then calculate speeds of objects. For an object moving at constant speed the distance travelled in a specific time can be calculated using the equation: distance travelled = speed × time If an object moves along a straight line, the distance travelled can be represented by a distance-time graph. The speed of an object can be calculated from the gradient of its distance-time graph. The acceleration of an object can be calculated from the gradient of a velocity-time graph.			
Separate Science Key Substantive Knowledge	A force or a system of forces may cause an object to rotate The turning effect of a force is called the moment of the force. The size of the moment is defined by the equation: momentt of a force = force × distance If an object is balanced, the total clockwise moment about a pivot equals the total anticlockwise moment about that pivot. A simple lever and a simple gear system can both be used to transmit the rotational effects of forces When a force acts on an object that is moving, or able to move, a change in momentum occurs. The equations F = m × a and a = combine to give the equation F = where m Δv = change in momentum ie force equals the rate of change of momentum		A gas can be compressed or expanded by pressure changes. The pressure produces a net force at right angles to the wall of the gas container (or any surface). Students should be able to use the particle model to explain how increasing the volume in which a gas is contained, at constant temperature, can lead to a decrease in pressure. For a fixed mass of gas held at a constant temperature: pressure × volume = constant p V = constant pressure, p, in pascals, Pa volume, V, in metres cubed, m3	
Examples of Key Disciplinary Knowledge (methods/framew ork to establish knowledge)	Experiment- calculating the speed of an object Experiment finding the centre of mass of regular and irregular shaped objects	Build circuits to complete experiments looking at potential difference, current and resistance, including thermistors and LDR's		

Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down)	Required practical activity 18: investigate the relationship between force and extension for a spring.	Required practical activity 15: use circuit diagrams to set up and check appropriate circuits to investigate the factors affecting the resistance of electrical circuits. This should include: • the length of a wire at constant temperature • combinations of resistors in series and parallel.	Required practical activity 17: use appropriate apparatus to make and record the measurements needed to determine the densities of regular and irregular solid objects and liquids. Volume should be determined from the dimensions of regularly shaped objects, and by a displacement technique for irregularly shaped objects. Dimensions to be measured using appropriate apparatus such as a ruler, micrometer or Vernier callipers.	
Examples of Reading Opportunity	Reading of class text book.	Reading of class text book.	Reading of class text book.	
Examples of Key Tier 2 Vocabulary	Balanced	Potential Resistance	Dense	
Examples of Key Tier 3 Vocabulary	Moment Equalibrium	Ammeter Diode	Displacement	
Examples of Numeracy	Students should be able to calculate the size of a force, or its distance from a pivot, acting on an object that is balanced. The equations $F = m \times a$ and $a =$ combine to give the equation $F =$ where m Δv = change in momentum ie force equals the rate of change of momentum	Students need to apply and re-arrange equations for potential difference, charge, current and resistance	Pupils need to calculate ther density of regular shaped and irregular shaped objects. They ned to analyse information to determine whether an object will sink or swim.	

<u>Physics</u>

Concept	Forces	Electromagnets	Energy	waves
Unit Title		6.7 Magnetism and electromagnetism		6.6 Waves
Comprising Of (use spec subtitle		6.7.1 Permanent and induced magnetism, magnetic forces and fields		6.6.1 Waves in air, fluids and solids
main sections, not subsections,		6.7.2 The motor effect		0.0.2 Electromagnetic waves
indicate chem only or subsection				
chem only-see AN example)				
Composite Knowledge/End Point		6.7.1 Permanent and induced magnetism, magnetic		6.6.1 Waves in air, fluids and solids
(big idea that should be answered		Students should be able to: • describe how to plot the		Students should be able to describe the difference between longitudinal and transverse
at the end of a unit)		magnetic field pattern of a magnet using a compass •		waves.
		draw the magnetic field pattern of a bar magnet		Students should be able to describe wave motion in terms of their amplitude, wavelength,
		point to another • explain how the behaviour of a		
		magnetic compass is related to evidence that the core		
		of the Earth must be magnetic.		
		magnetic effect of a current can be demonstrated •		
		draw the magnetic field pattern for a straight wire		
		carrying a current and for a solenoid (showing the		
		direction of the field) • explain how a solehold		
		current		
		6.7.2 The motor effect		
		Students should be able to recall the factors that affect		
		the size of the force on the conductor.		

Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the composite idea for that unit)

6.7.1 Permanent and induced magnetism, magnetic forces and fields

The poles of a magnet are the places where the magnetic forces are strongest. When two magnets are brought close together they exert a force on each other. Two like poles repel each other. Two unlike poles attract each other. Attraction and repulsion between two magnetic poles are examples of non-contact force. A permanent magnet produces its own magnetic field. An induced magnet is a material that becomes a magnet when it is placed in a magnetic field. Induced magnetism always causes a force of attraction. When removed from the magnetic field an induced magnet loses most/all of its magnetism quickly. Students should be able to describe: • the attraction and repulsion between unlike and like poles for permanent magnets • the difference between permanent and induced magnets.

The region around a magnet where a force acts on another magnet or on a magnetic material (iron, steel, cobalt and nickel) is called the magnetic field. The force between a magnet and a magnetic material is always one of attraction. The strength of the magnetic field depends on the distance from the magnet. The field is strongest at the poles of the magnet. The direction of the magnetic field at any point is given by the direction of the force that would act on another north pole placed at that point. The direction of a magnetic field line is from the north (seeking) pole of a magnet to the south(seeking) pole of the magnet. A magnetic field. The compass needle points in the direction of the Earth's magnetic field.

When a current flows through a conducting wire a magnetic field is produced around the wire. The strength of the magnetic field depends on the current through the wire and the distance from the wire. Shaping a wire to form a solenoid increases the strength of the magnetic field created by a current through the wire. The magnetic field inside a solenoid is strong and uniform. The magnetic field around a solenoid has a similar shape to that of a bar magnet. Adding an iron core increases the strength of the magnetic field of a solenoid. An electromagnet is a solenoid with an iron core.

6.7.2 The motor effect

When a conductor carrying a current is placed in a magnetic field the magnet producing the field and the

6.6.1 Waves in air, fluids and solids

Waves may be either transverse or longitudinal. The ripples on a water surface are an example of a transverse wave. Longitudinal waves show areas of compression and rarefaction. Sound waves travelling through air are longitudinal.

The amplitude of a wave is the maximum displacement of a point on a wave away from its undisturbed position. The wavelength of a wave is the distance from a point on one wave to the equivalent point on the adjacent wave. The frequency of a wave is the number of waves passing a point each second.

period = 1/ frequency
wave s peed = f requency × wavelength

6.6.2 Electromagnetic waves

Electromagnetic waves are transverse waves that transfer energy from the source of the waves to an absorber. Electromagnetic waves form a continuous spectrum and all types of electromagnetic wave travel at the same velocity through a vacuum (space) or air. The waves that form the electromagnetic spectrum are grouped in terms of their wavelength and their frequency. Going from long to short wavelength (or from low to high frequency) the groups are: radio, microwave, infrared, visible light (red to violet), ultraviolet, Xrays and gamma rays.

Electromagnetic waves have many practical applications. For example: • radio waves – television and radio • microwaves – satellite communications, cooking food • infrared – electrical heaters, cooking food, infrared cameras • visible light – fibre optic communications • ultraviolet – energy efficient lamps, sun tanning • X-rays and gamma rays – medical imaging and treatments.

	conductor exert a force on each other. This is called the motor effect.	
Separate Science Key Substantive Knowledge	If an electrical conductor moves relative to a magnetic field or if there is a change in the magnetic field around a conductor, a potential difference is induced across the ends of the conductor. If the conductor is part of a complete circuit, a current is induced in the conductor. This is called the generator effect. The generator effect is used in an alternator to generate ac and in a dynamo to generate dc. Microphones use the generator effect to convert the pressure variations in sound waves into variations in current in electrical circuits. A basic transformer consists of a primary coil and a secondary coil wound on an iron core.	Sound waves can travel through solids causing vibrations in the solid. Within the ear, sound waves cause the ear drum and other parts to vibrate which causes the sensation of sound. The conversion of sound waves to vibrations of solids works over a limited frequency range. This restricts the limits of human hearing. Ultrasound waves have a frequency higher than the upper limit of hearing for humans. Ultrasound waves are partially reflected when they meet a boundary between two different media. The time taken for the reflections to reach a detector can be used to determine how far away such a boundary is. This allows ultrasound waves to be used for both medical and industrial imaging. Seismic waves are produced by earthquakes. P-waves are longitudinal, seismic waves. P-waves travel at different speeds through solids and liquids. S-waves are transverse, seismic waves. S-waves cannot travel through a liquid. P- waves and S-waves provide evidence for the structure and size of the Earth's core. Echo sounding, using high frequency sound waves is used to detect objects in deep water and measure water depth.
Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)		
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down to see)		Required practical activity 20: make observations to identify the suitability of apparatus to measure the frequency, wavelength and speed of waves in a ripple tank and waves in a solid and take appropriate measurements. Required practical activity 21: investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface.
Examples of Reading Opportunity	Reading of class text book.	Reading of class text book.
Examples of Key Tier 2 Vocabulary	Conductor Resistance	Vibrate Continuous
Examples of Key Tier 3 Vocabulary	Alternator generator	Seismic

Examples of Numeracy			

Concept	Matter	Reactions	Earth
Unit Titles	Particle Model	Metals and Non-Metals	Earth structure
	Separating Mixtures	Acids and Alkalis	Universe
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	How states of matter derive from changes of state and energy changes of particles. How pure substances are different to mixtures.	How metals have different reactivities and will react with oxygen to produce acids and alkalis whose pH determines their reactions with other metals	How sedimentary, igneous, and metamorphic rocks can be inter converted over millions of years through weathering and erosion.
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the composite idea for that unit)	 Properties of solids, liquids and gases can be described in terms of particles in motion. Changes of temperature or state can be described in terms of particles gaining or losing energy. A pure substance consists of only one type of element or compound and has a fixed melting and boiling point. Mixtures may be separated due to differences in their physical properties. 	Metals and non-metals react with oxygen to form oxides which are either bases or acids. Metals can be arranged as a reactivity series in order of how readily they react with other substances. Some metals react with acids to produce salts and hydrogen. The pH of a solution depends on the strength of the acid: strong acids have lower pH values than weak acids.	Sedimentary, igneous and metamorphic rocks can be inter converted over millions of years through weathering and erosion, heat and pressure, and melting and cooling. The solar system can be modelled as planets rotating on tilted axes while orbiting the Sun, moons orbiting planets and sunlight spreading out and being reflected. This explains day and year length, seasons and the visibility of objects from Earth. Our solar system is a tiny part of a galaxy, one of many billions in the Universe.

	The method chosen to separate a mixture depends on which physical properties of the individual substances are different.	Mixing an acid and alkali produces a chemical reaction, neutralisation, forming a chemical called a salt and water.	Light takes minutes to reach Earth from the Sun, four years from our nearest star and billions of years from other galaxies.
Examples of Key Disciplinary Knowledge (methods/framework to	Relate the features of the particle model to the properties of materials in different states	Use experimental results to suggest an order of reactivity of various metals	Using chocolate to show sedimentary, metamorphic and igneous rocks
establish knowledge)	Devise ways to separate mixtures, based on their properties	Devise an enquiry to compare how well indigestion remedies work	Demonstration of acids and rocks pupils to write down their observations
	Be able to boil water and write a method and draw a graph as well as investigate the variables	Selection of metals and nonmetals to look at seeing if they conduct electricity or not with placemats	Pupils to write down their observations using hot and cold salol to test crystal size (size of igneous rocks)
	Investigate variables with diffusion of skittles '	Burning various metals such as Iron, Copper, Potassium and Magnesium to see its flame	Pupils to create a poster presentation on the planets and explain their findings to the rest of
	States of matter selection of S, L and G to look at	Metals reacting with Acids testing for Hydrogen	the class
	Heating Iron and Sulphur Mixture and being able to show the difference between	method	
	compounds and mixtures aswell as be able to draw particle diagrams	Metals reacting with water demonstration and allowing students to react magnesium and calcium in water	
	Investigate variables to see which substances		
	can dissolve in water so students are being introduced to solutions, soluble, insoluble etc	Chemical reactions stations of different chemicals and students writing observations down	
	Investigate variables selection of different		
	solutes being able to write a method as well as be able to calculate a mean and draw a graph	Selection of Acids and Alkalis to look at and use indicator such as universal indicator red and blue litmus paper	
	Filtering Salt sandy water and then heating it until evaporation and write a method	Demonstration of different strength acids and	
	Distillation whole class experiment being able to write a method	Investigation of variables Selection of grounded	
	Chromatography experiment being able to write a method Also mention ethical issues	antacids added in small spatula amounts in to the HCl beaker	

	around the usage of chromatography in various scenarios such as drug testing, pregnancy test and covid test	Making CuSO4 crystals and being able to write a method and risk assessment	
Examples of Reading Opportunity		Textbooks PowerPoints Etymology	
Examples of Key Tier 2 Vocabulary	Vibrate Space Movement	Reaction Neutral Hazard	Axis Tilt Equator
Examples of Key Tier 3 Vocabulary	Particle Diffusion Density Condense Solvent Mixture	Metals Non-metals Displacement pH indicators Base	Igneous Metamorphic Sedimentary Galaxy Satellite
Examples of Numeracy		PH scale values and its meaning in terms of Hydrogen potential	

Concept	Matter	Reactions	Earth
Unit Titles	Periodic Table	Chemical Energy	Climate
	Elements	Types of Reaction	Earth resources
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	Explain patterns in the periodic table and how atoms produce molecules and compounds that are often different	Chemical reactions (including combustion and thermal decomposition) involve energy changes where mass is always conserved	How natural processes and human activities affect how resources are obtained, used and disposed of and the impact of such on the future of our earth.

Examples of Key Substantive Knowledge (specific subject	The elements in a group all react in a similar way and sometimes show a pattern in reactivity.	During chemical reaction bonds are broken (requiring energy) and new bonds formed (releasing energy).	Carbon is recycled through natural processes in the atmosphere, ecosystems, oceans and the Earth's crust (such as photosynthesis and respiration) as well as human activities
knowledge relied upon for later	As you go down a group and across a period the elements show patterns in physical properties.	If the energy released is greater than the energy required, the reaction is exothermic. If the reverse, it is endothermic.	(burning fuels).
study or to grasp the composite idea for that unit)	Most substances are not pure elements, but compounds or	Combustion is a reaction with oxygen in which energy is	Greenhouse gases reduce the amount of energy lost from the Earth through radiation and therefore the temperature has
	mixtures containing atoms of different elements.	transferred to the surroundings as heat and light.	been rising as the concentration of those gases has risen.
	They have different properties to the elements they contain.	Thermal decomposition is a reaction where a single reactant is broken down into simpler products by heating.	Scientists have evidence that global warming caused by human activity is causing changes in climate.
		Chemical changes can be described by a model where atoms and molecules in reactants rearrange to make the products and the total number of atoms is conserved.	There is only a certain quantity of any resource on Earth, so the faster it is extracted, the sooner it will run out.
			Recycling reduces the need to extract resources.
			Most metals are found combined with other elements, as a compound, in ores.
			The more reactive a metal, the more difficult it is to separate it from its compound.
			Carbon displaces less reactive metals, while electrolysis is needed for more reactive metals.
Examples of Key Disciplinary Knowledge (methods/framework	Sort elements using chemical data and relate this to their position in the periodic table	Investigate a phenomenon that relies on an exothermic or endothermic reaction	Heating Iron Oxide with Carbon to extract Carbon and write word equation for displacement reduction reaction that is occurring
to octablich knowladge)		Investigate changes in mass for chemical and physical	
to establish knowledgej	Compare the properties of elements with the properties of a compound formed from them	processes	Ethical issues surrounding recycling which is to include whole class debate
	Identifying the difference between elements and compounds by heating iron and sulphur	Investigation of variables by adding Sodium Hydroxide in 5cm ³ intervals in the beaker to test the exothermic reaction that is	
	Investigation of variables by testing different polymer bags	taking place. Also being able to write a conclusion with the findings in their results and draw a graph	
	strength	Testing different exothermic and endothermic reactions and	
	Pupils to write down their observations for Group 1 elements and testing the metal ions in the flame and writing the observations	be able to sketch reaction profiles	
		Investigation of variables by testing NaOH and HCl and	
	Pupils to write down their observations for the	recording the temperature every 30 seconds. Public to write	
	displacement of halogens	down their observations for sodium bicarbonate to citric acid	
		and adding KI and lead nitrate	
		Investigation of variables by heating different fuels and testing	
		the temperature rise that is taking place. Also being able to	

		write a conclusion with the findings in their results and draw a graph Investigation of variables by heating different carbonates and testing the time it takes for limewater to turn cloudy. Also being able to write a conclusion with the findings in their results Burning Magnesium in the crucible and testing maths skills in calculating the difference between the different times of heating	
Examples of Reading Opportunity			
Examples of Key Tier 2 Vocabulary	Particle Matter	Heat Reaction	Earth Recycle Mining
Examples of Key Tier 3 Vocabulary	Periodic table Physical properties Chemical properties Groups Elements Atom Compound	Catalysts Exothermic Endothermic Chemical Bond Reactants Products Conserved	Renewable Non Renewable Finite
Examples of Numeracy			

Concept	Matter		Reactions	Earth
Unit Title	C1 and C2 Atomic structure and the periodic table	C3 Bonding, structure, and properties of matter		
Comprising of (use spec subtitle main sections, not subsections, indicate chem only or subsections that are chem only – see AN exmample)	C1.1 Atoms C 1.2 Chemical equations C1.3 separating Mixtures C1.4 FD and Chromatography C1.5 History of the atom C1.6 Structure of the atom C1.7 Ions C1.8 Electronic Structures C2.1 Development of Periodic Table C2.2 Group 0 Noble Gases C2.3 Group 1 Metals C2.4 Group 7 Halogens C2.5 Explaining trends	C3 .1 States of matter C3.2 Atoms into ions C3.3 ionic Bonding C3.4 giant Ionic Structures C3.5 Covalent Bonding C3.6 Structures of simple molecules C3.7 Giant covalent Structures C3.8 Fullerenes and Graphene C3.9 Bonding In metals C3.10 Giant Metallic Structures C3.11 Nanoparticles (GCSE CHEM ONLY) C3.12 Applications of nanoparticles		
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	End Of Unit 1 Be able to identify Protons Electrons and Neutrons in an atom and be able to identify the number of PEN in atoms and ions End Of Unit 2 Be able to know the key names of G1, G7 and G0 elements and the history of the periodic table	End of Unit 3 Students should be able to identify key components from Ionic, Covalent, Giant Covalent and Metallic Bonding and see the differences between them		

Examples of Key Substantive	4.1.1.1 C1.1 Atoms	C3 .1 States of matter	
	C 1.2 Chemical equations	Students should be able to: predict the states of substances at different	
Knowledge (specific subject	Students know that Elements are	temperatures given appropriate data \cdot explain the different temperatures at which	
knowledge relied upon for	made up of one type of atom	changes of state occur in terms of energy transfers and types of bonding	
	Compounds are made up of 2 or		
later study or to grasp the	more elements chemically combined	C3.2 Atoms into ions	
composite idea for that unit)	Mixtures consists of 2 or more	C3.3 Ionic Bonding	
	compounds and is not chemically	Students should be able to recall that Ionic is the transfer of electrons between	
	combined	metals and non-metals. How the electrons are transferred to achieve a full outer	
		shell	
	4.1.1.2 C1.7 lons		
	How we go from Atoms to lons for	C3.4 giant Ionic Structures	
	non-metals and metals due to the	Students should be familiar with the structure of sodium chloride	
	movement of electrons to get a full	Ionic compounds have high Mpt due to the strong electrostatic forces of attraction	
	outer shell	between oppositely charged ions	
		Ionic compounds in solid form do not conduct electricity as ions are not free to move	
	4.1.1.3 C1.5 History of the atom	but they do carry a charge when molten or in solution	
	Describe the difference between the	C2 E Couplant Banding	
	and the nuclear model of the atom	CS.S Covalent Bonding Students should be able to define that Covalent Bonding is the sharing of electrons	
	Describe why the new evidence from	between non-metals. How the electrons share to achieve a full outer shell. Students	
	the scattering experiment led to a	should be able to draw dot and cross diagrams	
	change in the atomic model	C3.6 Structures of simple molecules	
	onange in the atomic model	Students know the limitations of using dot cross ball and stick and 2D 3D diagrams	
	4.1.1.4 C 1.2 Chemical equations	C3.9 Bonding In metals	
	Chemical reactions can be	Students recognise that the Metallic bond is the presence of positive ions surrounded	
	represented by word equations or	by a sea of delocalised electrons	
	equations using symbols and		
	formulae. Looking at charges of	C3.7 Giant covalent Structures	
	subatomic particles	Students know the differences that in Simple covalent molecules and graphite they	
		have weak intermolecular forces which break upon heating, and this gives them a	
	C1.3 Separating Mixtures	low Mpt and Bpt. They have covalent bonds between atoms.	
	C1.4 FD and Chromatography	Students should be able to recognise giant covalent structures and that Giant	
	Suggest suitable separation and	covalent structures have high Mpt due to strong covalent bonds between their atoms	
	purification techniques for mixtures	Diamond – Only Covalent bonds	
	when given appropriate information	Graphite – Covalent Bonds and Intermolecular forces	
	eg chromatography and Distillation	Fullerene, Buckminster Fullerene, Graphene	
		Students need to be Familiarised with Displayed Melecular Fermulae and Det and	
	C1.6 Structure of the atom	Cross diagrams	
	Students should be able to calculate		
	the relative atomic mass of an	C3.9 Bonding In metals	
	element given the percentage	Metals can conduct electricity as they have delocalised electrons and can carry a	
	abundance of its isotopes.	charge	
		How are alloys different to regular metals in terms of their structure eg comparing	
	C1.7 lons	steel and copper	
	C1.8 Electronic Structures	C3.11 Nanoparticles (GCSE CHEM ONLY)	
	Students should be able to represent	C3.12 Applications of nanoparticles	
	the electronic structures of the first	Carrying out mathematical analysis on Nanoparticles and researching Nanoscience	
		projects	

twenty elements of the periodic	Carrying out quantitative analysis converting units	
table in both forms.		
C2.1 Development of Periodic Table		
4.1.2.1 - 4.1.2.6		
element in the periodic table is		
related to the arrangement of		
electrons in its atoms and hence to		
its atomic number.		
The early periodic tables were		
incomplete, and some elements		
were placed in inappropriate groups.		
To know that the early periodic table		
was arranged by atomic weight. Why		
John Newland came up with the law		
Mendeleev discovered and why be		
left gaps in his periodic table		
8-h h		
C2.1 Development of Periodic Table		
Most elements are metals. Metals		
are found to the left of the periodic		
table.		
Non-metals are found towards the		
right		
The noble gases have eight electrons		
in their outer energy level excent for		
helium, which has only two		
electrons.		
C2.3 Group 1 Metals		
In Group 1, the reactivity of the		
element's increases going down the		
group.		
C2 4 Group 7 Halogens		
In Group 7, the reactivity of the		
element's decreases going down the		
group. A more reactive halogen can		
displace a less reactive halogen from		
an aqueous solution		
with similar properties which are		

	different from those of the elements		
	in Group 1.		
Separate Science Key			
Substantive Knowledge			
Examples of Key Disciplinary	Students to write a detailed method	Students to write a detailed method on the production of Salt crystals using scientific	
Knowledge	for the chromatography practical	key words	
	and calculating an Rf value		
(methods/framework to	Students to write a detailed method		
establish knowledge)	for the distillation practical using		
	scientific key terms		
	Students to test their observational		
	skills by writing down what happens		
	in the reaction of Group 1 Alkali metals		
	incluis		
	Students to write their observation		
	in water and linking it to the		
	electronic structure as to why		
	magnesium is unreactive, but		
	Calcium is reactive		
	Students to test their observational		
	skills by writing down what happens		
	reactions.		
Required Practical (use spec			
towards back for list and add			
overview here then fill RP			
table I have made after V11			
table-scroll down)			
Examples of Poading			
Opportunity			
opportunity			

Examples of Key Tier 2 Vocabulary	Pattern Trend	Properties,	
Examples of Key Tier 3 Vocabulary	Configuration, sub-atomic particles, ions, isotopes, halogens, alkali metals, periodic table	Ionic, covalent, diamond, giant, simple, particle model. Graphite, allotropes.	
Examples of Numeracy			

Concept	Matter	Reactions			Earth	
Unit Title		Quantitative Chemistry	Chemical Changes	Energy Changes	The rate and extent of chemical change	
Comprising of (use spec subtitle main sections, not subsections, indicate chem only or subsections that are chem only – see AN example)		C4.1 relative Masses and Moles C4.2 Equations and calculations C4.3 From masses to Balanced equations C4.4 Percentage Yield (GCSE CHEMISTRY ONLY) C4.5 Atom Economy (GCSE CHEMISTRY ONLY) C4.6 Expressing Concentrations C4.7 Titrations (GCSE CHEMISTRY ONLY) C4.8 Titration calculations (GCSE CHEMISTRY ONLY) C4.8 Volume of Gases (GCSE CHEMISTRY ONLY)	C5.1 The Reactivity Series C5.2 Displacement Reactions C5.3 Extracting metals C5.4 Salts from metals C5.5 Salts from Insoluble Bases C5.6 Making More salts C5.7 neutralisation and pH scale C5.8 Strong and weak acids C6.1 Introduction to electrolysis C6.2 Changes at the electrode C6.3 Extraction of aluminium C6.4 Electrolysis of anueous solutions	C7.1 Exothermic and endothermic C7.2 Using energy transfers from reactions C7.3 Reaction profiles C7.4 Bond Energy Calculations C7.5 Chemical Cells and Batteries (GCSE CHEMISTRY ONLY) C7.6 Fuel Cells (GCSE CHEMISTRY ONLY)	C8.1 Rates of Reaction C8.2 Collision theory and Surface Area C8.3 Effect of temperature C8.4 Effect of Concentration and Pressure C8.5 Effects of catalysts C8.6 reversible reactions C8.7 Energy and reversible reactions C8.8 Dynamic Equilibrium C8.9 Altering Conditions	
Composite Knowledge/End Point		Students be able to do Chemical measurements, conservation of mass and the quantitative interpretation of chemical equations Use of amount of substance in relation to masses of pure substances	How metals react in water, acids What are bases and insoluble bases How Neutralication	Definition of Exothermic and Endothermic reactions and identifying physical chamical	Rate of Reaction interpretation of graphical data. Being able to calculate rate of reaction using a	
		Yield and atom economy of chemical reactions (chemistry only)	occurs and testing the	changes	langent	

(big idea that should be answered at the end of a unit)	Using concentrations of solutions in mol/dm3 (chemistry only) Use of amount of substance in relation to volumes of gases (chemistry only) Reactions of acids - Titrations (chemistry only)	different strengths of acid How Ionic compounds can conduct electricity in molten and aqueous conditions How to write half equations and oxidation and reduction occurs	Drawing reaction profile curves for both exothermic and endothermic reactions labelling Ea, energy change, reactants and products and labelling the axes Bond Energy Calculations Chemical Cells and Batteries (chemistry only)	Collision Theory: Surface Area, Temperature, Concentration, Pressure and Catalysts Reversible Reactions and Dynamic Equilibrium interpreting data	
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the composite idea for that unit)	 C4.1 relative masses and Moles Calculating Mr by doing Ar multiplied by number of atoms and then fomore complex formulae with brackets In a balanced chemical equation the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown. C4.2 Equations and calculations Calculating the conservation of mass and seeing how LHS = RHS unless gas enters or escapes. Some reactions may appear to involve a change in mass but this can usually be explained because a reactant or produce is a gas, and its mass has not been taken into account. For example: when a metal reacts with oxygen the mass of the oxide produced is greater than the mass of the metal or in thermal decompositions of metal carbonates carbon dioxide is produced and escapes into the atmosphere leaving the metal oxide as the only solid product. C4.2 Equations and calculations Calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product. C4.3 From masses to Balanced equations Balancing equations – Ensuring you balance the complex ions first if present followed by exciting elements and then C, H, O. The law of conservation of mass states that no atoms are lost or made during a chemical reaction, so the mass of the products it is possible to obtain in terms of amounts in moles or masses in grams. Calculating limiting reagents and ensuring you calculate which is limiting and excess by calculating moles and the calculating unknown mass C4.6 Expressing Concentrations Calculating Concentration = Moles/Volume and being able to convert 	 CS.1 The Reactivity Series Reacting Group 1 metals with Water and seeing that they form metal hydroxide and water CS.2 Displacement Reactions Displacement reaction is when more reactive metal pushes out the least reactive metal in the compound CS.3 Extracting metals Reduction of metals with carbon below in the reactivity series and seeing how metals are extracted from their ores deep underground CS.4 Salts from metals Metal Acid reactions and learning the name of the Acids and then knowing what salts are formed with HCl H2SO4 and HNO3 CS.5 Salts from Salt 	C7.1 Exomermic and endothermic C7.2 Using energy transfers from reactions Identifying that exothermic reactions release heat to the surroundings and endothermic reactions absorb heat from the surroundings. Physical change can return to their original state and is reversible and chemical change cannot return to their original state C7.3 Reaction profiles Exothermic reactions rise in temperature this causes heat energy to rise which means the products release heat to surroundings causing product to have less energy Endothermic reactions decrease in temperature which means products will absorb the heat from	C3.1 Rates of Reaction Atoms are colliding into one another all the time however they will only cause a reaction if they have energy greater or equal to Ea Rate of reaction=Amount of reactant used, or Product formed/Time taken Calculating rate of reaction from a graph when it is only a straight-line simple triangle and calculating rate of reaction from a graph when it is a curved line and this where a tangent must be drawn at the desired time or mass and then drawing a triangle to calculate the gradient C3.2 Collision theory and Surface Area Knowing how increasing SA means more particles are in contact with the surface which means more frequent and successful collisions C8.3 Effect of temperature Knowing how increasing	
	Calculating Concentration = Moles/Volume and being able to convert units accordingly into m3 and dm3 and cm3. Many chemical reactions take place in solutions. The concentration of a solution can be	Metal oxides form Salt and Water Metal Carbonates form Salt,	absorb the heat from the surroundings, so products have more	Knowing how increasing temperature means more particles have high KE to	
measured in mass per given volume of solution, eg grams per dm3	Water and Carbon	than reactants.	move which means more		
---	-------------------------	------------------------	-------------------------------		
(g/dm3	Dioxide. Explain	Students then use this	particles have energy greater		
	reduction and	knowledge to draw	or equal to Ea which means		
	oxidation in terms of	reaction profiles	more frequent and successful		
	loss or gain of oxygen.	C7.4 Bond Energy	collisions		
	C5.6 Making More	Calculations	C8.4 Effect of Concentration		
	salts	Using Reactants –	and Pressure		
	Forming Copper	Products to calculate	Knowing how increasing		
	sulphate crystals and	bond energy and	concentration means more		
	ensuring a write up is	knowing the	particles in each volume		
	completed,	difference between	which means more particles		
	C5.7 neutralisation	the units for bond	have energy greater or equal		
	and pH scale	energy and degrees	to Ea which means more		
	How Acids and Alkalis	Celsius	frequent and successful		
	form Salt and Water		collisions		
	and knowing how pH		Knowing how increasing		
	changes upon addition		pressure means more		
	of acid		particles are squeezed closer		
	C5.8 Strong and weak		in each volume which means		
	acids		more particles have energy		
	Seeing the clear		greater or equal to Ea which		
	difference between		means more frequent and		
	strong and weak acids.		successful collisions		
	Strong acids undergo		C8.5 Effects of catalysts		
	full dissociation and		How catalysts lower Ea by		
	Partial Acids undergo		providing an alternative		
	partial dissociation.		pathway for the reaction to		
	Concentrated Acids		occur . Students then be able		
	have a lot of Acid		to know that catalysts speed		
	Particles and weak		up the rate of reactions but		
	acids have less Acid		does not get used up in the		
	particles		process		
	C6.1 Introduction to		C8.6 reversible reactions		
	electrolysis		C8.7 Energy and reversible		
	Throughout 4.4.3:		reactions		
	Higher Tier students		Knowing how to identify		
	should be able to		reversible reactions by		
	write half equations		looking at the symbol. Then		
	for the reactions		be able to write symbol		
	occurring at the		equations for the more		
	electrodes during		common reversible reactions		
	electrolysis and may		C8.8 Dynamic Equilibrium		
	be required to		Students be able to define Le		
	complete and balance		Chatelier's principle is that		
	supplied half		when a system undergoes a		
	equations.		change in concentration,		
	C6.2 Changes at the		temp, pressure the system		
	electrode		will counteract the change by		
	C6.4 Electrolysis of		shifting the equilibrium		
	aqueous solutions				
	1.1		1		

		Be able to predict the		position in the opposite	
		products of the		direction	
		electrolysis of		Dynamic equilibrium is that in	
		aqueous solutions		a closed system nothing can	
		containing a single		enter or exit. and equilibrium	
		ionic compound.		is maintained	
				C8.9 Altering Conditions	
		C6.3 Extraction of		Be able to make qualitative	
		aluminium		predictions about the effect	
		Be able to know how		of changes on systems at	
		Aluminium is		equilibrium when given	
		extracted from		appropriate information.	
		Aluminium Oxide and		Be able to interpret	
		the half equations		appropriate given data to	
		involving Aluminium		predict the effect of a change	
		and Oxygen		in concentration of a reactant	
				or product on given reactions	
				at equilibrium.	
Substantiative	C4.4 Percentage Yield (GCSE CHEMISTRY ONLY)		C7.5 Chemical Cells		
Knowlodgo	Calculate the percentage yield of a product from the actual yield of a		and Batteries (GCSE		
Kilowieuge	reaction. Using % yield = actual / theoretical multiplied by 100. The		CHEMISTRY ONLY)		
SEPARATES SCIENCE	reaction may not go to completion because it is reversible \cdot some of the		C7.6 Fuel Cells (GCSE		
	product may be lost when it is separated from the reaction mixture				
	some of the reactants may react in ways different to the expected		Knowing now a		
			chemical cell battery		
	C4.5 Atom Economy (GCSE CHEWISTRY ONLY)		works and seeing what		
	explain why a particular reaction pathway is chosen to produce a		anodo and cathodo		
	Calculate the atom economy of a reaction to form a desired product		anoue and cathoue		
	from the balanced equation		Re able to interpret		
	% Atom Economy = Desired Mr of Product/ Total Mr of Reactants		data in terms of the		
			relative reactivity of		
	C4.8 Volume of Gases (GCSE CHEMISTRY ONLY)		different metals and to		
	Calculate the volume of a gas at room temperature and pressure from		evaluate the use of		
	its mass and relative formula mass. Equal amounts in moles of gases		cells.		
	occupy the same volume under the same conditions of temperature				
	and pressure.		Be able to evaluate the		
	C4.7 Titrations (GCSE CHEMISTRY ONLY)		use of hydrogen fuel		
	C4.8 Titration calculations (GCSE CHEMISTRY ONLY)		cells in comparison		
	Titrations ensuring knowledge on endpoint and how to write a method		with rechargeable cells		
	on the practical and using concentration equation and using ratios to		and batteries. (HT		
	calculate unknown concentration		only) Be able to write		
			the half equations for		
			the electrode		
			reactions in the		
			hydrogen fuel cell.		

Everyples of Key	Students to write a detailed method on conservation of mass and do	Students to test	GCSE CHEMISTRY ONLY		
Examples of Key	simple calculations to calculate conservation of mass	their	Investigate the variables	Testing the marble chips	
Disciplinary Knowledge		observational	where Copper is kept	using measuring cylinder	
(mothods/fromouvork to		skills by writing	constant and electrical	submerged into water and as	
(methous/manework to	Students to use Weighing scale apparatus to measure the amount of	down what	charge is passed through	the hydrogen gas is being	
establish knowledge)	product so that the calculation of Mr can be made	happens in the	different metals.	produced water is being	
		reaction of Group	Measuring the voltage.	displaced students are	
	GCSE CHEMSITRY ONLY	1 Alkali metals	Drawing a bar chart based	checking to see how much	
	Reaction between Copper chloride and Sodium carbonate and filtering	Students to then	off results and using the	gas is collected every ten	
	the relevant mixture allowing it to dry and calculating the percentage	do the practical	reactivity series to write a	seconds. They are then to	
	yield	reacting different	justified conclusion as to	identify variables write a	
		metals in HCl and	why some have higher	method aswell as a	
		testing	voltage	conclusion	
	Titration practical where students use Burette and Pipette filler	observational	Investigate the variables		
	learning new skills to neutralise the alkali with acid and then using the	skills but also	that affect temperature	Testing the temperature of	
	concentration equation with ratios to calculate unknown concentration	writing down key	change in chemical	Sodium thiosulphate and	
	of Alkali	variables and	reactions. React HCl and	seeing how quick the cross	
		writing a	NaOH and measure	disappears. Students to	
		conclusion using	temperature changes.	complete variables and then	
		PEEL		write a method aswell as a	
			Selection of different	conclusion	
		Students to write	exothermic and		
		down	endothermic reactions and	How the concentration of	
		observations for	pupils are then drawing	Sodium thiosulphate in water	
		the displacement	reaction profiles	affects now quick the cross	
		of different metals		disappears. Students to	
		using unterent		then complete a conclusion	
		solutions		aswell as a graph	
		Students to write		aswell as a graph	
		a detailed method		WS 2.1 – use scientific	
		on the extraction		theories and explanations to	
		of copper from		develop hypotheses, WS 2.2	
		Copper Oxide by		- plan experiments or devise	
		heating it with		procedures to make	
		carbon. Students		observations, produce or	
		to write an		characterise a substance, test	
		evaluation based		hypotheses, check data or	
		on the experiment		explore phenomena.	
		too		WS 2.3 – apply a knowledge	
				of a range of techniques,	
		Students to test		instruments, apparatus, and	
		hydrogen gas		materials to select those	
		production by		appropriate to the	
		reacting different		experiment.	
		metals in Acid and		WS 2.4 – carry out	
		testing		experiments appropriately	
		observational		naving due regard for the	
		341113		apparatus the accuracy of	
	1			αρραίατος, της ατταίατη στ	

Students to write	measurements and health
a detailed report	and safety considerations.
where they will be	WS 2.6 – make and record
investigating	observations and
variables, risk	measurements using a range
assessment,	of apparatus and methods.
method.	WS 2.7 – evaluate methods
conclusion, and	and suggest possible
evaluation on the	improvements and further
production of	investigations
Conner Sulnhate	in congations:
crystals	
Students to make	
salt envetals and	
sait crystals allu	
write a detailed	
method and	
conclusion on	
what happens to	
the acid in terms	
of dissociation	
when it is diluted	
Investigating	
variables by	
reacting Acid with	
different metals	
WS 2.1 – use	
scientific theories	
and explanations	
to develop	
hypotheses. WS	
2.2 – plan	
experiments or	
devise procedures	
to make	
observations	
produce or	
characterise a	
substance test	
hypotheses check	
data ar avalara	
nata of explore	
prieromena.	
vvs z.3 – appiy a	
knowledge of a	
range of	
techniques,	
instruments,	
apparatus, and	

		materials to select those appropriate to the experiment. WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods. WS 2.7 – evaluate methods and suggest possible improvements and further investigations.			
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table- scroll down)	Reacting volumes of solutions of a strong acid and a strong alkali by titration. Concentration of one of the solutions in mol/dm ³ from the reacting volumes and the known concentrations of other volumes	Making Soluble Salts: Preparation of dry Copper Sulphate crystals. React Sulfuric acid with insoluble copper oxide to prepare an aqueous solution of the salt copper sulphate. Then undergo filtration and prepare dry crystals by heating in a dish GCSE Chemistry only	Investigate the variables that affect temperature change in chemical reactions. React HCl and NaOH and measure temperature changes. Investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals.	How does concentration affect the rate of reaction. React magnesium ribbon with different concentrations of HCl and measure the volume of gas produced for each concentration. Calculate rate of reaction from a graph	

Examples of Reading Opportunity				Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only) determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution. Electrolysis Investigate what happens when two different (aq) solutions are electrolysed using inert electrodes. Identify the elements formed at the anode and cathode			
Examples of Key Tier 2 Vocabulary	balancing			Metals Non-metals Displacement	temperature	Collision theory	
Examples of Key Tier 3 Vocabulary	Mole, atom economy,	PH indicators Base	Salts		1		

Examples of Numeracy		

Chemistry

Concept	Matter		Reactions	Earth	
Unit Title	Organic Chemistry	Chemical Analysis		Chemistry of the atmosphere	Using resources
Comprising of (use spec subtitle main sections, not subsections, indicate chem only or subsections that are chem only – see AN exmample)	C9.1 Hydrocarbons C9.2 fractional distillation of oil C9.3 Burning Hydrocarbon fuels C9.4 Cracking Hydrocarbons GCSE CHEMISTRY ONLY C10.1 Reactions of alkenes C10.2 Structures of Alcohols Carboxylic Acid and esters C10.3 Reactions and uses of alcohols C10.4 Carboxylic Acid and Esters C11.1 Addition Polymerisation C11.2 Condensation Polymerisation C11.3 natural polymers C11.4 DNA	C12.1 Pure Substances and Mixtures C12.2 Analysing Chromatograms C12.3 testing for gases GCSE CHEMISTRY ONLY C12.4 Tests for positive ions C12.5 Test for negative ions C12.6 Instrumental Analysis		C13.1 History of the atmosphere C13.2 our evolving atmosphere C13.3 Greenhouse gases C13.4 Global Climate Change C13.5 Atmospheric Pollutants	C14.1 Finite and renewable resources C14.2 Water safe to drink C14.3 Treating Wastewater C14.4 Extracting metals from ores C14.5 LCA C14.6 Reduce Reuse and Recycle GCSE Chemistry Only C15.1 Rusting C15.2 Useful Alloys C15.3 properties of Polymers C15.4 Glass, Ceramics and Composites C15.5 Making Ammonia C15.6 Economics of Haber Process C15.7 making Fertilisers in a lab C15.8 making fertilisers in industry
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	End of Unit 9 Crude oil is a finite resource found in rocks due to the remains of zooplankton/algae which was buried in mud.	End of Unit 12 Students be able to know the difference between an impure and pure substance. Students to be able to write a method on chromatography and calculate Rf values		End of Unit 13 Students To know which gases are present in the atmosphere before and after Students be able to explain the greenhouse effect. Students be able to explain the effects and consequences of climate change	End of Unit 14 Students to know the difference between renewable and non-renewable energy and the impacts Students know what Potable water is and how to treat potable water Students know the process that is involved in treating wastewater

	Crude oil is a mixture of Hydrocarbons but the hydrocarbons themselves are compounds Alkanes have the general formula CnH2n+2 and Alkenes have the general formula CnH2n Know the displayed and molecular formulas of methane, ethane, propane, butane Hydrocarbons in crude oil can be separated by FD and this is by heating the crude oil and vapours enter the column, once the Boiling point is reached for a particular fraction, they will cool and condense into a liquid	Students be able to recall the key gas test for hydrogen carbon dioxide, oxygen and chlorine GCSE separates Chemistry Students be able to identify the positive and negative ions and the usage of scientific analysis such as spectroscopy	To know how pollution is caused in the atmosphere and the major contributors. Pollutants speed up the enhanced greenhouse effect	GCSE SEPARATES CHEMISTRY Students know the difference between corrosion and rusting Students know the difference between just metals and alloys Students know the properties of ceramics, composites, and polymers Students know the haber process in detail and how it makes ammonia and the impacts it has on the environment Students know how to make fertilisers in the lab and in industry
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later	C9.1 Hydrocarbons Be able to recognise substances as alkanes given their formulae in these	Be able to use melting point data to distinguish pure from impure substances. Pure elements and	C13.1 History of the atmosphere Describe the composition of the atmosphere. Draw accurate pie charts for the composition of the atmosphere. about	C14.1 Finite and renewable resources Students State examples of natural products that are supplemented or replaced by agricultural and synthetic
study or to grasp the composite idea for that unit)	rorms. Crude oil is a finite resource found in rocks. Crude oil is the remains of	compounds melt and boil at specific temperatures. Melting point and boiling point data can be used to	about one-fifth (approximately 80%) nitrogen about one-fifth (approximately 20%) oxygen small proportions of various other gases,	renewable resources given appropriate information. Natural resources,
	an ancient biomass consisting mainly of plankton that was buried in	distinguish pure substances from mixtures. Identify formulations given	including carbon dioxide, water vapour and noble gases C13.2 our evolving atmosphere	supplemented by agriculture, provide food, timber, clothing, and fuels. Finite resources from the Earth, oceans and
	G9.2 fractional distillation of oil	appropriate information. A formulation is a mixture that has been designed as a useful product.	Given appropriate information, interpret evidence and evaluate different theories	energy and materials. C14.2 Water safe to drink
	distillation works in terms of evaporation and	in which each chemical has a particular purpose. Formulations are	theory suggests that during the first billion years of the Earth's existence there was	Describe the differences in treatment of ground water and salty water. Give
	condensation The many hydrocarbons in crude oil may be separated	made by mixing the components in carefully measured quantities to ensure that the product has the	intense volcanic activity that released gases that formed the early atmosphere and water vapour that condensed to form the	reasons for the steps used to produce potable water. The methods used to produce potable
	into fractions, each of which contains molecules with a similar number of	required properties	oceans. At the start of this period the Earth's atmosphere may have been like the atmospheres of Mars and Venue today	water depend on available supplies of water and local conditions. In the UK,
	carbon atoms, by fractional distillation.	C12.2 Analysing Chromatograms	consisting of mainly carbon dioxide with little or no oxygen gas. Volcanoes also	dissolved substances (fresh water) that collects in the ground, in lakes and rivers
	C9.3 Burning Hydrocarbon fuels	separates mixtures. Suggest how chromatographic methods can be used for distinguishing oure	produced nitrogen which gradually built up in the atmosphere and there may have been small proportions of methane and	and most potable water is produced by: choosing an appropriate source of fresh

Recall how boiling point, viscosity and flammability change with increasing molecular size. Some properties of hydrocarbons depend on the size of their molecules, including boiling point, viscosity and flammability. These properties influence how hydrocarbons are used as fuels.

C9.4 Cracking Hydrocarbons

Describe in general terms the conditions used for catalytic cracking and steam cracking. Recall the colour change when bromine water reacts with an alkene. Hvdrocarbons can be broken down (cracked) to produce smaller. more useful molecules. Cracking can be done by various methods including catalytic cracking and steam cracking Draw fully displayed structural formulae of the first four members of the alkenes and the products of their addition reactions with hydrogen, water, chlorine, bromine and iodine. Alkenes are hydrocarbons with the functional group C=C. It is the generality of reactions of functional groups that determine the reactions of organic compounds.

substances from impure substance. Chromatography can be used to separate mixtures and can give information to help identify substances. Chromatography involves a stationary phase and a mobile phase. Separation depends on the distribution of substances between the phases.

C12.3 testing for gases

The test for hydrogen uses a burning splint held at the open end of a test tube of the gas. Hydrogen burns rapidly with a pop sound. The test for oxygen uses a glowing splint inserted into a test tube of the gas. The splint relights in oxygen. The test for carbon dioxide uses an aqueous solution of calcium hydroxide (lime water). When carbon dioxide is shaken with or bubbled through limewater the limewater turns milky (cloudy). The test for chlorine uses litmus paper. When damp litmus paper is put into chlorine gas the litmus paper is bleached and turns white.

ammonia. When the oceans formed, carbon dioxide dissolved in the water and carbonates were precipitated producing sediments, reducing the amount of carbon dioxide in the atmosphere.

Describe the main changes in the atmosphere over time and some of the likely causes of these changes. Algae and plants decreased the percentage of carbon dioxide in the atmosphere by photosynthesis.

Describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter. Greenhouse gases in the atmosphere maintain temperatures on Earth high enough to support life.

C13.4 Global Climate Change

Recall two human activities that increase the amounts of each of the greenhouse gases carbon dioxide and methane. Some human activities increase the amounts of greenhouse gases in the atmosphere. These include: · carbon dioxide · methane

Briefly describe four potential effects of global climate change Discuss the scale, risk and environmental implications of global climate change.

Students briefly discuss what is carbon footprint and how it can be reduced C13.5 Atmospheric Pollutants Describe how carbon monoxide, soot (carbon particles), sulfur dioxide and oxides of nitrogen are produced by burning fuels Predict the products. The combustion of fuels is a major source of atmospheric pollutants. Most fuels, including coal, contain carbon and/or hydrogen and may also contain some sulfur. The gases released into the atmosphere when a fuel is burned may include carbon dioxide, water vapour, carbon monoxide, sulfur dioxide and oxides of nitrogen. Solid particles and unburned hydrocarbons may also be released that form particulates in the atmosphere.

water \cdot passing the water through filter beds \cdot sterilising.

Students can Comment on the relative ease of obtaining potable water from waste, ground and salt water. Sewage treatment includes: · screening and grit removal · sedimentation to produce sewage sludge and effluent · anaerobic digestion of sewage sludge · aerobic biological treatment of effluent. C14.4 Extracting metals from ores Evaluate alternative biological methods of metal extraction, given appropriate information. Copper ores are becoming scarce and new ways of extracting copper from low-grade ores include Phyto mining and bioleaching. These methods avoid traditional mining methods of digging, moving, and disposing of large amounts of rock. Phytomining uses plants to absorb metal compounds. The plants are harvested and then burned to produce ash that contains metal compounds. Bioleaching uses bacteria to produce leachate solutions that contain metal compounds.

C14.5 LCA

Carry out simple comparative LCAs for shopping bags made from plastic and paper. Life Cycle Assessments (LCAs) are carried out to assess the environmental impact of products in each of these stages: • extracting and processing raw materials • manufacturing and packaging • use and operation during its lifetime • disposal at the end of its useful life, including transport and distribution at each stage.

C14.6 Reduce Reuse and Recycle

Evaluate ways of reducing the use of limited resources, given appropriate information. The reduction in use, reuse and recycling of materials by end users reduces the use of limited resources, energy consumption, waste and environmental impacts. Evaluate ways of reducing the use of limited resources,

			Describe and explain the problems caused by increased amounts of these pollutants in the air. Carbon monoxide is a toxic gas. It is colourless and odourless and so is not easily detected	given appropriate information. The reduction in use, reuse and recycling of materials by end users reduces the use of limited resources, energy consumption, waste and environmental impacts. Metals, glass, building materials, clay ceramics and most plastics are produced from limited raw materials. Much of the energy used in the processes comes from limited resources. Obtaining raw materials from the Earth by quarrying and mining causes environmental impacts.
Examples of Key Substantive	Know the conditions used	C12.4 Tests for positive ions		C15.1 Rusting
Keen lades	for fermentation of sugar	C12.5 Test for negative ions		Describe experiments and interpret
Knowledge	using yeast. Be able to	Flame tests can be used to identify		results to show that both air and water
	recognise alcohols from	some metal ions (cations). Lithium,		are necessary for rusting. Explain
SEDARATES CHEMISTRY	their names or from given	sodium, potassium, calcium and		sacrificial protection in terms of relative
SEI ARATES CHEMISTRI	formulae. Aqueous	copper compounds produce		reactivity. Corrosion is the destruction of
	solutions of ethanol are	distinctive colours in flame tests:		materials by chemical reactions with
	colutions are formented	flame, sodium compounds result in crimson		substances in the environment. Rusting
	using voast	vollow flame, potassium compounds		water are necessary for iron to rust
	using yeast.	result in lilac flame, calcium		Corrosion can be prevented by applying
	Explain why carboxylic acids	compounds result in an orange-red		a coating that acts as a barrier such as
	weak acids in terms of	flame · conner compounds		greasing nainting or electronlating
	ionisation and pH are.			Aluminium has an oxide coating that
	Recognise carboxylic acids	metal ions (cations). Solutions of		protects the metal from further
	from their names or from	aluminium, calcium and magnesium		corrosion.
	given formulae. The first	ions form white precipitates when		C15.2 Useful Alloys
	four members of a	sodium hydroxide solution is added		Recall a use of each of the alloys
	homologous series of	but only the aluminium hydroxide		specified Interpret and evaluate the
	carboxylic acids are	precipitate Be able to write balanced		composition and uses of alloys other
	methanoic acid, ethanoic	equations for the reactions to		than those specified, given appropriate
	acid, propanoic acid and	produce the insoluble hydroxides.		information. Most metals in everyday
	butanoic acid. The			use are alloys. Bronze is an alloy of
	structures of carboxylic	Solutions of copper (II), iron(II) and		copper and tin. Brass is an alloy of
	acids can be represented in	iron (III) ions form coloured		copper and zinc.
	the following forms:	precipitates when sodium hydroxide		C15.3 properties of Polymers
		solution is added. Copper(II) forms a		C15.4 Glass, Ceramics and Composites
	Recognise addition	blue precipitate, iron(II) a green		Explain how low density and high-density
	polymers and monomers	precipitate and iron(III) a brown		poly(ethene) are both produced from
	chown and from the	precipitate.		thermosoftening and thermosoften
	shown and from the	Colutions of aluminium, calcium and		neumosortening and thermosetting
	presence of the functional group $-C-C_{-}$ in the	magnesium ions form white		Most of the glass we use is soda lime
	monomers Alkenes can be	precipitates when sodium bydrovido		glass made by beating a mixture of cand
	used to make polymers	solution is added but only the		sodium carbonate and limestone
	such as poly(ethene) and	aluminium hydroxide precipitate		Borosilicate glass made from sand and
	sach as porgretiterie/ and	araminiani nyarovide precipitate	1	sorosineare glass, made nom sand allu

polymerisation. C12.6 Instrumental Analysis temperatures than soda-lime glass. State advantages of instrumental Be able to name the types methods compared with the chemical
State advantages of instrumental C15.5 Making Ammonia
Be able to name the types methods compared with the chemical C15.5 Making Ammonia
of monomers from which tests in this specification. Elements C15.6 Economics of Haber Process
these naturally occurring and compounds can be detected and Recall a source for the nitrogen and a
polymers are made. identified using instrumental source for the hydrogen used in the
DNA (deoxyribonucleic methods. Instrumental methods are Haber process. (HT only) Interpret gr/
acid) is a large molecule accurate, sensitive and rapid. of reaction conditions versus rate. (H
essential for life. DNA Interpret an instrumental result given only) Apply the principles of dynamic
encodes genetic appropriate data in chart or tabular equilibrium to the Haber process. Th
instructions for the form, when accompanied by a Haber process is used to manufacture
development and reference set in the same form, ammonia, which can be used to prod
functioning of living limited to flame emission nitrogen-based fertilisers. The raw
spectroscopy. Flame emission materials for the Haber process are
spectroscopy is an example of an nitrogen and hydrogen.
instrumental method used to analyse C15.7 making Fertilisers in a lab
metal ions in solutions. C15.8 making fertilisers in industry
Recall the names of the salts produce
when phosphate rock is treated with
nitric acid, sulfuric acid, and phospho
acid. Compounds of nitrogen,
prospinous and potassium are used
refulses to improve all for a contain
productivity, of all these elements
Execute of Key Discipling with the week of the second
Examples of Key Disciplinary
Knowledge (methods/framework then being able to write a the correct manipulation of materials to select those appropriate
to ostablich knowledge) conclusion linking the chain apparatus, the accuracy of the experiment.
length to the rise in measurements and health and safety WS 2.4 – carry out experiments
temperature considerations. appropriately having due regard for t
WS 2.6 – make and record correct manipulation of apparatus, th
Being able to record observations and measurements accuracy of measurements and health
observations during the using a range of apparatus and and safety considerations.
cracking practical ensuring methods WS 2.5 – recognise when to apply a
students are aware of the knowledge of sampling techniques to
products during cracking ensure any samples collected are
WS 2.4 – carry out experiments representative.
appropriately having due regard for WS 2.6 – make and record observation WS 2.6 – make and record observation
the correct manipulation of and measurements using a range of
apparatus, the accuracy of apparatus and methods.
measurements and health and safety WS 2.7 – evaluate methods and sugge
considerations. possible improvements and further
wS 2.b – make and record investigations.
Using a range of apparatus and
methods

Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down)	Investigate how paper chromatography can be used to separate and identify a mixture of food colourings. Calculate Rf value and calculate what dyes the unknown contains GCSE SEPARATES Use of chemical tests to identify the ions in unknown single ionic compounds. Use flame tests and a range of solutions to analyse a range of known ionic compounds.	Analysing and purifying a sample of water and making it safe to drink Completing the distillation of water so separating the salt from the water via condensation and evaporation
Examples of Reading Opportunity		
Examples of Key Tier 2 Vocabulary		
Examples of Key Tier 3 Vocabulary		
Examples of Numeracy		

<u>Biology</u>

Unit Titles Movement Interdependence Human reproduction Cells Plant Reproduction and Variation Variation Comprising Of (use spec subtitle main sections, not subsections, indicate chem only or subsection chem only-see AN example) The reasons why organisms need a skeleton, and what are organisms are made of All the interactions between organisms in an ecosystem What is variation and how it happens Composite Knowledge/End Point (big idea that should be answered at the end of a unit) How are skeleton is adapted to allow movement and protection. How cells are adapted to do particular functions: support, protection, movement and the production of new blood cells. Norganisms in a food web depend on each other for nutrients. How are subsection of new blood cells.	Concept	Organisms	Ecosystems	Genes
CellsPlant Reproduction and VariationvariationComprising Of (use spec subtitle main sections, not subsections, indicate chem only or subsection chem only- see AN example)The reasons why organisms need a skeleton, and what are organisms are made ofAll the interactions between organisms in an ecosystemWhat is variation and how it happensComposite Knowledge/End Point (big idea that should be answered at the end of a unit)How are skeleton is adapted to allow movement and protection. How cells are adapted to do particular functionsHow to organisms interact in an ecosystem How to plants reproduceHow do organisms vary and How to plants reproduceExamples of Key Substantive Knowledge (specific subjectThe human skeleton main functions: support, protection, movement and the production of new blood cells.Organisms in a food web depend on each other for nutrients.There is variation between individuals of the same species.	Unit Titles	Movement	Interdependence	Human reproduction
Comprising Of (use spec subtitle main sections, not subsections, indicate chem only or subsection chem only- see AN example)The reasons why organisms need a skeleton, 		Cells	Plant Reproduction and Variation	variation
sections, not subsections, indicate chem only or subsection chem only- see AN example) and what are organisms are made of ecosystem Composite Knowledge/End Point (big idea that should be answered at the end of a unit) How are skeleton is adapted to allow movement and protection. How cells are adapted to do particular functions How to organisms interact in an ecosystem How to plants reproduce How do organisms vary and How they are organisms adapted to their environment Examples of Key Substantive Knowledge (specific subject The human skeleton main functions: support, protection, movement and the production of new blood cells. Organisms in a food web depend on each other for nutrients. There is variation between individuals of the same species.	Comprising Of (use spec subtitle main	The reasons why organisms need a skeleton,	All the interactions between organisms in an	What is variation and how it happens
chem only or subsection chem only- see AN example)The ways in which plant reproduceComposite Knowledge/End Point (big idea that should be answered at the end of a unit)How are skeleton is adapted to allow movement and protection. How cells are adapted to do particular functionsHow to organisms interact in an ecosystem How to plants reproduceHow do organisms vary and How they are organisms adapted to their environment How to plants reproduceExamples of Key Substantive Knowledge (specific subject knowledge context of a unit)The human skeleton main functions: support, protection, movement and the production of new blood cells.Organisms in a food web depend on each other for nutrients.There is variation between individuals of the same species.	sections, not subsections, indicate	and what are organisms are made of	ecosystem	
see AN example)Image: An example of the second	chem only or subsection chem only-		The ways in which plant reproduce	
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)How are skeleton is adapted to allow movement and protection. How cells are adapted to do particular functionsHow to organisms interact in an ecosystem How to plants reproduceHow do organisms vary and How they are organisms adapted to their environment How are humans made?Examples of Key Substantive Knowledge (specific subject Image and induce and ind	see AN example)			
(big idea that should be answered at the end of a unit)movement and protection. How cells are adapted to do particular functionsHow to plants reproduceHow they are organisms adapted to their environmentExamples of Key Substantive Knowledge (specific subject Image: the state of the state	Composite Knowledge/End Point	How are skeleton is adapted to allow	How to organisms interact in an ecosystem	How do organisms vary and
end of a unit) adapted to do particular functions environment How are humans made? Examples of Key Substantive The human skeleton main functions: support, protection, movement and the production of new blood cells. Organisms in a food web depend on each other for nutrients. There is variation between individuals of the same species.	(big idea that should be answered at the	movement and protection. How cells are	How to plants reproduce	How they are organisms adapted to their
Examples of Key Substantive Knowledge (specific subjectThe human skeleton main functions: support, protection, movement and the production of new blood cells.Organisms in a food web depend on each other for nutrients.There is variation between individuals of the same species.	end of a unit)	adapted to do particular functions		environment
Examples of Key Substantive Knowledge (specific subjectThe human skeleton main functions: support, protection, movement and the production of new blood cells.Organisms in a food web depend on each other for nutrients.There is variation between individuals of the same species.				How are humans made?
Knowledge (specific subject protection, movement and the production of for nutrients. same species. Image: Instant and the production of new blood cells. same species.	Examples of Key Substantive	The human skeleton main functions: support,	Organisms in a food web depend on each other	There is variation between individuals of the
I knowledge relied upon for leter study. He blood cens.	Knowledge (specific subject	protection, movement and the production of	for nutrients.	same species.
knowledge relied upon for later study	knowledge relied upon for later study	new blood cens.	So, a change in one population leads to	Some variation is
or to grasp the composite idea for that Antagonistic pairs of muscles create movement changes in others.	or to grasp the composite idea for that	Antagonistic pairs of muscles create movement	changes in others.	inherited/environmental/both.
unit) when one contracts the other relaxes	unit)	when one contracts the other relaxes		
The population of a species is affected by the Variation is important for the survival of a			The population of a species is affected by the	Variation is important for the survival of a
Multicellular organisms are composed of cells number predators and prey, disease, pollution species, helping it to avoid extinction in an		Multicellular organisms are composed of cells	number predators and prey, disease, pollution	species, helping it to avoid extinction in an
systems to carry out life processes. and nutrients. and nutrients.		systems to carry out life processes.	and nutrients.	aiways changing environment.

	There are many types of specialised cells. With different shapes, organelles and adaptations for particular functions	Plants have adaptations to disperse seeds using wind, water or animals.Plants reproduce sexually to produce seeds, which are formed following	The menstrual cycle prepares the female for pregnancy and stops if the egg is fertilised by a sperm. The developing foetus relies on the mother to provide it with oxygen and nutrients, to remove waste and protect it against harmful substances
Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)	Use of microscopes to observe cells Calculation using microscopes Devise practical to observe plant onion cell Diffusion practical variables(skittles	Interpretation of food webs	Normal distribution graphs Production of graphs for continuous and discontinuous
Examples of Reading Opportunity			
Examples of Key Tier 2 Vocabulary	Movement, specialised	Transfer, connect	Cycle, development
Examples of Key Tier 3 Vocabulary	Cell, uni-cellular, tissue, organ, diffusion, mitochondria, cell wall, cell membrane	Food chain/web Ecosystem Population Producer Consume Interdependence Pollen Ovules Pollination Fertilisation Seed Fruit Germination	Species Variation Continuous Discontinuous Gamete Fertilisation Uterus Menstruation Vagina Penis, Foetus Placenta Oviduct, Adolescence Implantation Gestation
Examples of Numeracy		Predator/prey graph based questions	Histogram and bar chart interpretation

<u>Biology</u>

Concept	Organisms	Ecosystems	Genes
Unit Titles	Breathing	Respiration	Evolution
	Digestion	photosynthesis	inheritance
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	Explain how our body exchanges gases. Describe how drugs can affect our bodies. Identify what nutrients our bodies need and how we break down food	Compare and contrast aerobic and anaerobic respiration. Explain how plants produce food by photosynthesis	Linking key points of natural selection with evolution. Explain how we inherit particular characteristics
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the composite idea for that unit)	In gas exchange, oxygen and carbon dioxide move between alveoli and the blood. Oxygen is transported to cells for aerobic respiration and carbon dioxide, a waste product of respiration, is removed from the body. Breathing occurs through the action of muscles in the ribcage and diaphragm. The amount of oxygen required by body cells determines the rate of breathing. The body needs a balanced diet with carbohydrates, lipids, proteins, vitamins, minerals, dietary fibre and water, for its cells' energy, growth and maintenance. Organs of the digestive system are adapted to	Respiration is a series of chemical reactions, in cells, that breaks down glucose to provide energy and form new molecules. Most living things use aerobic respiration but switch to anaerobic respiration, which provides less energy, when oxygen is unavailable. Plants and algae do not eat, but use energy from light, together with carbon dioxide and water to make glucose (food) through photosynthesis. They either use the glucose as an energy source, to build new tissue, or store it for later use. Plants have specially-adapted organs that allow them to obtain resources needed for photosynthesis.	Natural selection is a theory that explains how species evolve and why extinction occurs. Biodiversity is vital to maintaining populations. Within a species variation helps against environment changes, avoiding extinction. Within an ecosystem, having many different species ensures resources are available for other populations, like humans. Inherited characteristics are the result of genetic information, in the form of sections of DNA called genes, being transferred from parents to offspring during reproduction. Chromosomes are long pieces of DNA which contain many genes. Gametes, carrying half the total number of chromosomes of each parent, combine during fertilisation.

	ones which can travel in the blood to		
	cells and are used for life processes		
Examples of Key Disciplinary	Food tests	Investigate rate of photosynthesis	Histograms/line graphs for discontinuous and continuous
Knowledge (methods/framework to			uata
establish knowledge)			
			Punnet squares for inherited features
Examples of Reading Opportunity			
Examples of Key Tier 2 Vocabulary	Increase, decrease	Adapted, rate	Diverse, characteristics
Examples of Key Tier 3 Vocabulary	Breathing, trachea, bronchi,	Aerobic, anaerobic respiration, fertilisers,	Population, natural selection, extinct, biodiversity,
	bronchioles, alveoli, ribs, diaphragm,	photosynthesis, chlorophyll, stomata	competition, evolution, inherited characteristics, DNA,
	lung volume, enzymes, fibre,		chromosome, Gene
	carbohydrates, lipids, fats, protein,		
	stomach, large /small intestine, gut		
	bacteria		

Examples of Numeracy	Pie charts of inhaled/exhaled air	

Biology

Concept	Organisms	Drganisms				
Unit Title	B1 cell structure and transport	B2 cell division	B3 organisation and the digestive system	B4 organising animals and plants		
Comprising of (use spec subtitle main sections, not subsections, indicate chem only or subsections that are chem only – see AN example)	 B1.1 the world of the microscope B1.2 animal and plant cells B1.3 Eukaryotic and prokaryotic cells B1.4 Specialisation in animal cells B1.5 specialisation in plant cells B1.6 Diffusion B1.7 Osmosis B1.9 Active transport B1.10 Exchanging materials 	B2.1 Cell division B2.2 growth and differentiation B2.3 stem cells B2.4 stem cell dilemmas	 B3.1 tissues and organs B3.2 the human digestive system B3.3 the chemistry of food B3.4 catalysts and enzymes B3.5 factors affecting enzymes action B3.6 how the digestive system works B3.7 making digestion efficient 	 B4.1 the blood B4.2 the blood vessels B4.3 the heart B4.4 helping the heart B4.5 breathing and gas exchange B4.6 tissues and organs in plants B4.7 transport systems in plants B4.8 evaporation and transpiration B4.9 factors affecting transpiration 		

Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	Be able to use microscopes and compare light and electron microscopes Compare and contrast eukaryotic and prokaryotic cells Compare and contrast diffusion, osmosis and active transport	Students should be able to: Understand the role of chromosomes in cells Describe the process of mitosis How cell differentiation happens animals and plants	Students should be able to: Identify the levels of organisation of an organism The importance of enzymes in digestion Describe key parts of the digestive system	Students be able to identify and describe key parts of the circulatory system Students explain how the lungs are adapted to exchange CO2 and O2 efficiently Explain how the xylem and phloem are used in plants	
		Compare the pros and cons of the use of stem cells			
Examples of Key Substantive Knowledge (specific subject knowledge relied upon for later study or to grasp the composite idea for that unit)	4.1.1.1 Eukaryotes and prokaryotes Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. Bacterial cells (prokaryotic cells) are much smaller in comparison. They have cytoplasm and a cell membrane surrounded by a cell wall. The genetic material is not enclosed in a nucleus. It is a single DNA loop called plasmids. be scale and size of cells in standard form.	4.1.1.4 Cell differentiation explain the importance of cell differentiation. As an organism develops, cells differentiate to form different types of cells. • Most types of animal cell differentiate at an early stage. • Many types of plant cells retain the ability to differentiate throughout life. In animals, cell division is for repair and replacement. As a cell differentiates i. It has become a specialised cell.	 4.2.2.1 The human digestive system Students should be able to use the 'lock and key theory' as a simplified model to explain enzyme action. Students should be able to recall the sites of production and the action of amylase, proteases and lipases. Students should be able to understand simple word equations but no chemical symbol equations are required. Digestive enzymes convert food into small soluble molecules that can be absorbed into the bloodstream. Cells are the basic building blocks of all living organisms. A tissue is a group of cells with a similar structure and 	4.2.2.2 The heart and blood vessels Students should know the structure and functioning of the human heart and lungs, including how lungs are adapted for gaseous exchange. The heart is an organ that pumps blood around the body in a double circulatory system. The right ventricle pumps blood to the lungs where gas exchange takes place. The left ventricle pumps blood around the rest of the body. Knowledge of the blood vessels associated with the heart is limited to the aorta, vena cava, pulmonary artery, pulmonary vein and coronary arteries. Knowledge of the names of the heart valves is not required. Knowledge of the lungs is restricted to the trachea, bronchi, alveoli and the capillary network surrounding the alveoli. The natural resting heart rate is controlled by a group of cells located in the right atrium that act as a pacemaker. Artificial	

44424	••••••	44.24	function Opportunity		1
4.1.1.2 Ar	imal and 4	4.1.2.1	runction. Organs are	pacemakers are electrical devices used	
plant cells	C	Chromosomes	aggregations of tissues	to correct irregularities in the heart	
Students	hould be T	The nucleus of a cell	performing specific functions.	rate. The body contains three different	
able to ex	plain how c	contains	Organs are organised into	types of blood vessel: • arteries • veins	
the main s	ub-cellular c	chromosomes made	organ systems, which work	capillaries.	
structures	, are related o	of DNA molecules.	together to form organisms	Students should be able to explain how	
to their fu	nctions. E	Each chromosome	The digestive system is an	the structure of these vessels relates to	
Compare	organelles is ca	carries genes. In body	example of an organ system	their functions. Students should be able	
plant and	animal cells. c	cells the	in which several organs work	to use simple compound measures such	
Plant and	algal cells c	chromosomes are in	together to digest and absorb	as rate and carry out rate calculations	
also have	a cell wall p	pairs.	food. Students should be able	for blood flow.	
made of c	ellulose,		to relate knowledge of		
which stre	ngthens the 4	4.1.2.2. Mitosis and	enzymes to Metabolism.	4.2.2.3 Blood	
cell.	tl	the cell cycle	Students should be able to	Blood is a tissue consisting of plasma, in	
	С	Cells divide in a series	describe the nature of	which the red blood cells, white blood	
4.1.1.3 Ce	II o	of stages called the	enzyme molecules and relate	cells and platelets are suspended.	
specialisa	cion c	cell cycle. Students	their activity to temperature	Students should know the functions of	
explain ho	w the sl	should be able to	and pH changes	each of these blood components.	
structure	of different d	describe the stages of	Digestive enzymes convert	Students should be able to recognise	
types of c	ell relate to the	the cell cycle.	food into small soluble	different types of blood cells in a	
their func	ion in a	including mitosis.	molecules that can be	photograph or diagram, and explain	
tissue an	organ or D	During the cell cycle	absorbed into the	how they are adapted to their	
organ syst	em or the th	the genetic material	bloodstream Carbohydrase	functions	
whole or	anism Cells	is doubled and then	break down carbohydrates to		
may he sr	erialised to d	divided into two	simple sugars Amylase is a	4.2.2.4 Coronary heart disease: a non-	
carry out	a narticular ic	identical cells Refore	carbohydrase which broaks	communicable disease	
function		a cell can divide it	down starch Protesses brook	Coronary heart disease Fatty material	
cells por	a colls and in	heads to grow and	down proteins to amino	builds up in coronary arteries reducing	
		increase the number	acide Linasos broak down	blood flow to the boart muscle. Storts	
nuscie ce		of cub collular	lipide (fate) to glycoral and	son he used to keep the coronant	
• root hal			fatty aside. The products of	can be used to keep the coronary	
and phloe	m cells in si	structures such as	ratty acids. The products of	arteries open. Statins reduce	
plants.	ri	ribosomes and	aigestion are used to build	cholesterol levels, so fatty material is	
4.1.1.5 M	croscopy m	mitochondria. The	new carbohydrates, lipids and	deposited more slowly. Faulty heart	
understar	d how D	DNA replicates to	proteins. Some glucose is	valves can be replaced with biological	
microscop	y techniques fo	form two copies of	used in respiration. Bile is	or mechanical ones. Heart failure can	
have deve	loped over e	each chromosome. In	made in the liver and stored	be treated with a heart and lung	
time • exp	lain how n	mitosis one set of	in the gall bladder. It is	transplant. Artificial hearts can be used	
electron r	nicroscopy c	chromosomes is	alkaline to neutralise	whilst waiting for a transplant, or to	
has increa	sed p	pulled to each end of	hydrochloric acid from the	allow the heart to rest and recover.	
understar	ding of sub- the theorem of the theorem of the second second second second second second second second second s	the cell and the	stomach. It also emulsifies fat		

ce	llular structures. An	nucleus divides.	to form small droplets which	4.2.3.1 Plant tissues	
ele	ectron microscope	Finally the cytoplasm	increases the surface area.	Plant organs and Plant tissues. The leaf.	
ha	is much higher	and cell membranes	The alkaline conditions and	Plant organs include stems, roots and	
ma	agnification and	divide to form two	large surface area increase	leaves. Organs are made up of different	
res	solving power than a	identical cells. Cell	the rate of fat breakdown by	tissues, eg meristem tissue at growing	
lig	ht microscope	division by mitosis is	lipase	tips. The leaf is the organ of	
str	ructures.	important in the		photosynthesis. Examples of tissues in a	
ca	Iculations involving	growth and		leaf: epidermis, palisade and spongy	
ma	agnification, real size	development of		mesophyll, xylem, phloem, guard cells	
an	nd image size using	multicellular		and stomata. How these tissues are	
the	e formula:	organisms. Give		adapted for their function.	
ma	agnication =	example where			
siz	e of image size of	mitosis is occurring.		4.2.3.2 Plant organ system	
rea	al object Students	0		Plant transport systems. The roots.	
sh	ould be able to			stem and leaves form a plant transport	
ex	press answers in			system. Root hair cells absorb water by	
sta	andard form if	4.1.2.3. Stem cells		osmosis and mineral ions by diffusion	
ap	propriate.	A stem cell is an		and active transport. (See next lesson).	
	r -r	undifferentiated cell		Xylem tissue transports water and	
4.1	1.3.1. Diffusion	of an organism which		dissolved ions. The flow of water from	
Su	ibstances may move	is capable of giving		the roots to leaves is called the	
int	to and out of cells	rise to many more		transpiration stream. Xylem tissue is	
ac	ross the cell	cells of the same		composed of hollow tubes	
m	embranes via	type and from which		strengthened with lignin. Phloem tissue	
dif	ffusion Diffusion is	certain other cells can		transports dissolved sugars from the	
th	e spreading out of	arise from		leaves to other parts of the plant. The	
the	e particles of any	differentiation		movement of food through phloem is	
	hstance in solution	describe the function		called translocation. Phloem cells have	
	particles of a gas	of stem cells in		pores in their end walls for movement	
	sulting in a net	embryos, in adult		of cell sap.	
m	ovement from an	animals and in the			
are	ea of higher	meristems in plants			
	incentration to an	Stem cells from			
	ea of lower	human embryos can			
	incentration	he cloned and made			
dif	ffusion linked to	to differentiate into			
	vgen and carbon	most different types			
did	oxide in gas	of human cells. Stem			
	change and of the	cells from adult hone			
	aste product urea	marrow can form			
500					

from cells into the	many types of cells		
blood plasma for	including blood cells.		
excretion in the	Meristem tissue in		
kidney. explain how	plants can		
different factors aff	ct differentiate into any		
the rate of diffusion	• type of plant cell,		
the difference in	throughout the life of		
concentrations	the plant. Treatment		
(concentration	with stem cells may		
gradient) • the	be able to help		
temperature • the	conditions such as		
surface area of the	diabetes and		
membrane. A single	paralysis. In		
celled organism has	a therapeutic cloning		
relatively large surfa	e an embryo is		
area to volume ratio	produced with the		
This allows sufficien	same genes as the		
transport of molecu	es patient. Stem cells		
into and out of the	ell from the embryo are		
to meet the needs of	not rejected by the		
the organism. WS 1	patient's body so		
Recognise, draw an	they may be used for		
interpret diagrams	medical treatment.		
that model diffusion	The use of stem cells		
Use of isotonic drin	has potential risks		
and high energy dri	ks such as transfer of		
in sport. calculate a	d viral infection, and		
compare surface are	a some people have		
to volume ratios.	ethical or religious		
Students should be	objections. Stem cells		
able to explain the	from meristems in		
need for exchange	plants can be used to		
surfaces and a	produce clones of		
transport system in	plants quickly and		
multicellular	economically. • Rare		
organisms in terms	f species can be cloned		
surface area to volu	ne to protect from		
ratio. explain how t	e extinction. • Crop		
small intestine and	plants with special		
lungs in mammals, s	lls features such as		

In fish, and the roots disease resistance	
and leaves in plants, can be cloned to	
are adapted for produce large	
exchanging materials. numbers of identical	
In multicellular plants for farmers.	
organisms. The	
effectiveness of an	
exchange surface is	
increased by: • having	
a large surface area •	
a membrane that is	
thin, to provide a short	
diffusion path • (in	
animals) having an	
efficient blood supply	
• (in animals, for	
gaseous exchange)	
being ventilated.	
A 1 3 2 Osmosis	
Water may mayo	
via osmosis is	
the diffusion of water	
from a dilute solution	
to a concentrated	
solution through a	
partially permeable	
membrane.	
4.1.3.3. Active	
transport de la constante de la	
Active transport	
moves substances	
from a more dilute	
solution to a more	
concentrated solution	

	concentration				ľ
	gradient) This				
	requires energy from				
	respiration. Active				
	transport allows				
	mineral ions to be				
	absorbed into plant				
	root hairs from verv				
	dilute solutions in the				
	soil. Plants require				
	ions for healthy				
	, growth. It also allows				
	sugar molecules to be				
	absorbed from lower				
	concentrations in the				
	gut into the blood				
	which has a higher				
	sugar concentration.				
	Sugar molecules are				
	used for cell				
	respiration. Students				
	should be able to: •				
	describe how				
	substances are				
	transported into and				
	out of cells by				
	diffusion, osmosis and				
	active transport •				
	explain the differences				
	between the three				
	processes.				
Separate Science Key Substantive					
Knowledge					
Examples of Key Disciplinary Knowledge	Use a light microscope	S 2.4 – carry out	Use qualitative reagents to	S 2.4 – carry out experiments appropriately	
(methods/framework to establish	to observe, draw and	having due regard for the	test for a range of	apparatus, the accuracy of measurements and	
knowledge)	label a selection of	correct manipulation of	carbohydrates, lipids and	health and safety considerations.	
	plant and animal cells.	apparatus, the accuracy of	proteins		

	A scale magnification must be included Investigate the effect of a range of concentrations of salt or sugar solutions	measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods	Investigate the effect of pH on the rate of reaction of amylase enzyme.	WS 2.6 – make and record observations and measurements using a range of apparatus and methods	
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table- scroll down)	Biology RP1- microscopes Use a light microscope to observe, draw and label a selection of plant and animal cells. A scale magnification must be included Biology RP2 osmosis Investigate the effect of a range of concentrations of salt or sugar solutions on the mass of plant tissue		Biology RP3 food tests Use qualitative reagents to test for a range of carbohydrates, lipids and proteins. To include: Benedict's test for sugars; iodine test for starch; Biuret reagent for protein Biology RP4 Enzymes Investigate the effect of pH on the rate of reaction of amylase enzyme. Students should use a continuous sampling technique to determine the time taken to completely digest a starch solution at a range of pH values. Iodine reagent is to be used to test for starch every 30 seconds. Temperature must be controlled by use of a water bath or electric heater		
Examples of Reading Opportunity					

Examples of Key Tier 2 Vocabulary	Transport, scale	Specialised, cycle	System, breakdown	System, factor	
Examples of Key Tier 3 Vocabulary	Cell, Eukaryotic,	Mitosis, cell cycle,	Digestive system, enzymes,	Red blood cells, white blood cells,	
	prokaryotic, cell	differentiate, stem	carbohydrates, lipids, fatty	platelets, plasma, urea, haemoglobin,	
	membrane, cytoplasm,	cell, cloning,	acids, glycerol, proteins,	Arteries, veins, capillaries, circulatory	
	ribosomes,	embryonic/adult	amino acids, denatured,	system, valves, pulmonary vein/artery,	
	mitochondria,	stem cells,	active site, metabolism, pH,	atrium, ventricle, aorta, vena cava,	
	chloroplasts, vacuole,	therapeutic cloning	temperature	stent, statins, pacemaker, gas exchange,	
	microscopes,			alveoli, xylem, phloem, palisade,	
	specialised cells, root			translocation, guard cells, stomata,	
	hair cell, xylem,			transpiration, potometer	
	phloem, diffusion,				
	osmosis, active				
	transport, surface area				
	to volume ratio				
Examples of Numeracy	Calculation of				
	magnification				
	Data analysis				
	Scale conversions				

Biology

Concept	Organisms								Ecosystem s	Gene s
Unit Title	B5 Communicable diseases	B6 preventing and treating disease	B7 Non- communicable diseases	B8 Photosynt hesis	B9 Respiratio n	B10 The human nervous system	B11 Hormonal Coordination	B12 Homeostasis in action(biology)		
Comprising Of (use spec subtitle main sections, not subsections, indicate chem only or subsection chem only-see AN example)	B5.1 Health and disease B5.2 pathogens and disease B5.3 Growing bacteria in the lab (biology) B5.4 preventing bacterial growth (Biology) B5.5 Preventing infections B5.6 viral diseases B5.7 bacterial diseases B5.8 Diseases caused by fungi and protists B5.9 Human defence responses B5.10 More about plant diseases (Biology)	B6.1 Vaccination B6.2Antibiotic s and painkillers B6.3 Discovering drugs B6.4 Developing drugs B6.5 Making monoclonal antibodies(bi ology) B6.6 Uses of monoclonal antibodies	B7.1 Non- communicable diseases B7.2 Cancer B7.3 Smoking and the risk of disease B7.4 Diet, exercise and disease B7.5 Alcohol and other carcinogens	B8.1 Photosynt hesis B8.2 the rate of photosynt hesis B8.3 How plants use glucose B8.4 Making the most of photosynt hesis	B9.1 Aerobic respiratio n B9.2 the response to exercise B9.3 Anaerobic respiratio n B9.4 Metabolis m and the liver	B10.1 Principles of homeostasis B10.2 The structure and function of the nervous system B10.3 Reflex actions B10.4 The brain(biology) B10.5 The eye (biology) B10.6 Common problems in the eye(biology)	B11.1 Principles of hormonal control B11.2 Control of blood glucose level B11.3 Treating Diabetes B11.4 The role of negative feedback B11.4 Human reproduction B11.5 Hormones and the menstrual cycle B11.7 The artificial control of fertility	B12.1 Controlling body temperature B12.2 Removing waste products B12.3 The human kidney B12.4 Dialysis – an artificial kidney B12.5 Kidney transplants		

B5.11 Plan responses	t defence (Biology)					B11.8 Infertility treatments B11.9 Plant hormones and responses		
						(Biology) B11.10 Using plant hormones (Biology)		
Composite Knowledge/End Point (big idea that should be answered at the end of a unit) Understan different p that can ca communic including b viruses, an and how tl spread bet organisms Explain the defence m of the hum plants	d the athogens use able disease, acteria, d protists, nese can be chanisms an body and different echanisms an body and different echanisms an body and body and body and body and clinical trials including double blind trials and using placebos.	Explain the prevention of disease by vaccination, how the and treatment of cancer and the risks of immune system works and what is antigens and antibodies.Recall the general causes and treatment of cancer and the risks of answking as well as the dangers of smoking whilst pregnant.doutline the processes of clinical trials including trials and effect of alcohol usingIdentify the connection between obesity and type 2 diabetes.doutline the processes of clinical trials including the consectionobesity and type 2 diabetes.doutline the processes of clinical trials and using placebos.on the brain and liver	Identify and explain adaptation s of leaves to achieve maximum efficiency and understan d the concept of limiting factors s Explain the use of greenhous es and how the conditions can be monitored and manipulat ed to achieve the highest rate of	Describe the process of respiration and write the balanced symbol equation. Recall the response of humans to exercise, including changes in heart rate, breathing rate, and breakdow n of glycogen be able to write the word equation for anaerobic respiration including bow lactic	Explain the importance of being able to respond to environmenta I changes and coordinate behaviour. Explain how the nervous system is adapted for its functions. Describe the functions of the main structures in the nervous system. Explain the role of chemicals at synapses. Describe and use different methods to measure reaction time. Required practical Make a plan	Describe the endocrine system and define the term hormone. Relate hormone release and hormone action to the control system model introduced. Label a diagram of the organs in the endocrine system. Explain why the pituitary gland is often called the master gland. Compare the actions of the nervous and endocrine systems.	Explain how our body monitors and regulates its temperature. Explain how our body removes waste. What is the function of our kidneys and link this to dialysis	

				photosynt	affects the	to investigate			
				hesis.	body and	a factor on			
					how it is	human			
					broken	reaction time.			
					down				
Examples of Key	4.3.1.1 Communicable	4.3.1.7.	4.2.2.4	4.4.1.1	4.4.2.1	4.5.1	4.5.3.1 Human		
Substantive	(infectious) diseases	Vaccination	Coronary heart	Photosynt	Aerobic	Homeostasis	endocrine		
	explain how diseases	Students	disease: a non-	hetic	and	Homeostasis	system		
Knowledge (specific	caused by viruses,	should be	communicable	reaction	anaerobic	maintains	Describe the		
subject knowledge	bacteria, protists and	able to	disease	Photosynt	respiratio	optimal	principles of		
relied upon for later	fungi are spread in	explain how	Students should	hesis is	n	conditions for	hormonal		
study or to grasp the	animals and plants.	vaccination	be able to	represente	The energy	enzyme action	coordination		
composite idea for	Students should be	will prevent	evaluate the	d by the	transferre	and all cell	and control by		
that unit)	able to explain how the	illness in an	advantages and	equation:	d supplies	functions.	the human		
that unit)	spread of.diseases can	individual,	disadvantages	carbon	all the	In the human	endocrine		
	be reduced or	and how the	of treating	dioxide +	energy	body, these	system. The		
	prevented. Pathogens	spread of	cardiovascular	water light	needed for	include	endocrine		
	are microorganisms	pathogens	diseases by	glucose +	living	control of:	system is		
	that cause infectious	can be	drugs,	oxygen	processes.	•• blood	composed of		
	disease. Pathogens	reduced by	mechanical	Students	Respiratio	glucose	glands which		
	may be viruses,	immunising a	devices or	should	n in cells	concentration	secrete		
	bacteria, protists or	large	transplant. In	recognise	can take	•• body	chemicals		
	fungi. They may infect	proportion of	coronary heart	the	place	temperature	called		
	plants or animals and	the	disease layers	chemical	aerobically	•• water	hormones		
	can be spread by direct	population.	of fatty material	symbols:	(using	levels.	directly into the		
	contact, by water or by	Vaccination	build up inside	CO2 , H2	oxygen) or	These	bloodstream.		
	air. Bacteria and	involves	the coronary	O, O2 and	anaerobica	automatic	That blood		
	viruses may reproduce	introducing	arteries,	C6 H12O6	lly	control	carries the		
	rapidly inside the body.	small	narrowing	. Students	(without	systems may	hormone to a		
	Bacteria may produce	quantities of	them. This	should be	oxygen),	involve	target organ		
	poisons (toxins) that	dead or	reduces the	able to	to transfer	nervous	where it		
	damage tissues and	inactive forms	flow of blood	describe	energy.	responses or	produces an		
	make us feel ill. Viruses	of a pathogen	through the	photosynt	Students	chemical	effect. Compare		
	live and reproduce	into the body	coronary	hesis as an	should be	responses.	to the nervous		
	inside cells, causing cell	to stimulate	arteries,	endother	able to	All control	system the		
	damage.	the white	resulting in a	mic	compare	systems	effects are		
		blood cells to	lack of oxygen	reaction in	the	include:	slower but act		
	4.3.1.2. Viral diseases	produce	for the heart	which	processes	 cells called 	for longer. The		
	Measles is a viral	antibodies. If	muscle. Stents	energy is	of aerobic	receptors,	pituitary gland		
	disease showing	the same	are used to	transferre	and	which detect	in the brain is a		

							 r	
symptoms of fever and	pathogen re-	keep the	d from the	anaerobic	stimuli	'master gland'		
a red skin rash.	enters the	coronary	environme	respiration	(changes in	which secretes		
Measles is a serious	body the	arteries open.	nt to the	with	the	several		
illness that can be fatal	white blood	Statins are	chloroplas	regard to	environment)	hormones into		
if complications arise.	cells respond	widely used to	ts by light	the need	••	the blood in		
For this reason most	quickly to	reduce blood		for	coordination	response to		
young children are	produce the	cholesterol	4.4.1.2	oxygen,	centres (such	body		
vaccinated against	correct	levels which	Rate of	the	as the brain,	conditions.		
measles. The measles	antibodies,	slows down the	photosynt	differing	spinal cord	These		
virus is spread by	preventing	rate of fatty	hesis	products	and pancreas)	hormones in		
inhalation of droplets	infection.	material	Students	and the	that receive	turn act on		
from sneezes and	Students do	deposit. In	should be	relative	and process	other glands to		
coughs. HIV initially	not need to	some people	able to	amounts	information	stimulate other		
causes a flu-like illness.	know details	heart valves	explain the	of energy	from	hormones to be		
Unless successfully	of vaccination	may become	effects of	transferre	receptors	released to		
controlled with	schedules and	faulty,	temperatu	d.	 effectors, 	bring about		
antiretroviral drugs the	side effects	preventing the	re, light	Organisms	muscles or	effects. Be able		
virus attacks the body's	associated	valve from	intensity,	need	glands, which	to identify the		
immune cells. Late	with specific	opening fully, or	carbon	energy for:	bring about	position of the		
stage HIV infection, or	vaccines.	the heart valve	dioxide	••	responses	following on a		
AIDS, occurs when the		might develop a	concentrat	chemical	which	diagram of the		
body's immune system	4.3.1.8	leak. Students	ion, and	reactions	restore	human body: •		
becomes so badly	Antibiotics	should	the	to build	optimum	pituitary gland		
damaged it can no	and	understand the	amount of	larger	levels.	• pancreas •		
longer deal with other	painkillers	consequences	chlorophyl	molecules		thyroid •		
infections or cancers.	Students	of faulty valves.	l on the	••	4.5.2.1	adrenal gland •		
HIV is spread by sexual	should be	Faulty heart	rate of	movement	Structure and	ovary • testes		
contact or exchange of	able to	valves can be	photosynt	 keeping 	function			
body fluids such as	explain the	replaced using	hesis.	warm.	The nervous	4.5.3.2 Control		
blood which occurs	use of	biological or	Students	Aerobic	system	of blood		
when drug users share	antibiotics	mechanical	should be	respiration	enables	glucose		
needles. Tobacco	and other	valves. In the	able to: •	is	humans to	concentration		
mosaic virus (TMV) is a	medicines in	case of heart	measure	represente	react to their	Blood glucose		
widespread plant	treating	failure a donor	and	d by the	surroundings	concentration is		
pathogen affecting	disease.	heart, or heart	calculate	equation:	and	monitored and		1
many species of plants	Antibiotics,	and lungs can	rates of	glucose +	to coordinate	controlled by		
including tomatoes. It	such as	be	photosynt	oxygen	their	the pancreas. If		1
gives a distinctive	penicillin, are	transplanted.	hesis •	carbon	behaviour.	the blood		1
'mosaic' pattern of	medicines	Artificial hearts	extract	dioxide +	Information	glucose		
discolouration on the	that help to	are occasionally	and	water	from	concentration is		1

leaves which affects	cure bacterial	used to keep	interpret	Students	receptors	too high, the		
the growth of the plant	disease by	patients alive	graphs of	should	passes along	pancreas		
due to lack of	killing	whilst waiting	photosynt	recognise	cells	produces the		
photosynthesis	infective	for a heart	hesis rate	the	(neurones) as	hormone		
	bacteria	transplant, or to	involving	chemical	electrical	insulin that		
4.3.1.3. Bacterial	inside the	allow the heart	one	symbols:	impulses to	causes glucose		
diseases	body. It is	to rest as an aid	limiting	C6H12O6,	the central	to move from		
Salmonella food	important	to recovery.	factor •	O2, CO2	nervous	the blood into		
poisoning is spread by	that specific		plot and	and H2O.	system (CNS).	the cells. In liver		
bacteria ingested in	bacteria	4.2.2.5 Health	draw	Anaerobic	The CNS is the	and muscle		
food, or on food	should be	issues Students	appropriat	respiration	brain and	cells excess		
prepared in unhygienic	treated by	should be able	e graphs	in muscles	spinal cord.	glucose is		
conditions. In the UK,	specific	to describe the	selecting	is	The CNS	converted to		
poultry are vaccinated	antibiotics.	relationship	appropriat	represente	coordinates	glycogen for		
against Salmonella to	WS 1.4 The	between health	e scale for	d by the	the response	storage. Be able		
control the spread.	use of	and disease and	axes •	equation:	of effectors	to explain how		
Fever, abdominal	antibiotics has	the interactions	translate	glucose	which may	insulin controls		
cramps, vomiting and	greatly	between	informatio	lactic acid	be muscles	blood glucose		
diarrhoea are caused	reduced	different types	n between	As the	contracting or	(sugar) levels in		
by the bacteria and the	deaths from	of disease.	graphical	oxidation	glands	the body. Type		
toxins they secrete.	infectious	Health is the	and	of glucose	secreting	1 diabetes is a		
Gonorrhoea is a	bacterial	state of physical	numeric	is	hormones.	disorder in		
sexually transmitted	diseases.	and mental	form.	incomplet	stimulus	which the		
disease (STD) with	However, the	well-being.		e in	receptor	pancreas fails		
symptoms of a thick	emergence of	Diseases, both	(HT only)	anaerobic	coordinator	to produce		
yellow or green	strains	communicable	These	respiration	effector	sufficient		
discharge from the	resistant to	and non-	factors	much	response	insulin. It is		
vagina or penis and	antibiotics is	communicable,	interact	less energy	Students	characterised		
pain on urinating. It is	of great	are major	and any	is	should be	by uncontrolled		
caused by a bacterium	concern.	causes of ill	one of	transferre	able to	high blood		
and was easily treated	There are	health. Other	them may	d than in	explain how	glucose levels		
with the antibiotic	links with this	factors	be the	aerobic	the various	and is normally		
penicillin until many	content to	including diet,	factor that	respiration	structures in a	treated with		
resistant strains	Culturing	stress and life	limits		reflex	insulin		
appeared. Gonorrhoea	microorganis	situations may	photosynt	Anaerobic	arc – including	injections. In		
is spread by sexual	ms (biology	have a	hesis. (HT	respiration	the sensory	Type 2 diabetes		
contact. The spread	only). There	profound effect	only)	in plant	neurone,	the body cells		
can be controlled by	are links with	on both	Students	and yeast	synapse, relay	no longer		
treatment with	this content	physical and	should be	cells is	neurone and	respond to		
antibiotics or the use	to Resistant	mental health.	able to		motor	insulin		

of a barrier method of	bacteria.	Different types	explain	represente	neurone –	produced by		
contraception such as a	Antibiotics	of disease may	graphs of	d by the	relate to their	the pancreas. A		
condom.	cannot kill	interact. •	photosynt	equation:	function.	carbohydrate		
	viral	Defects in the	hesis rate	glucose	Students	controlled diet		
4.3.1.4. Fungal	pathogens.	immune system	involving	ethanol +	should	and an exercise		
diseases	Painkillers and	mean that an	two or	carbon	understand	regime are		
Rose black spot is a	other	individual is	three	dioxide	why reflex	common		
fungal disease where	medicines are	more likely to	factors	Anaerobic	actions are	treatments.		
purple or black spots	used to treat	suffer from	and decide	respiration	important.	Obesity is a risk		
develop on leaves,	the symptoms	infectious	which is	in yeast	Reflex actions	factor for Type		
which often turn	of disease but	diseases. •	the	cells is	are automatic	2 diabetes.		
yellow and drop early.	do not kill	Viruses living in	limiting	called	and rapid;	Students should		
It affects the growth of	pathogens. It	cells can be the	factor. (HT	fermentati	they do not	be able to		
the plant as	is difficult to	trigger for	only)	on and has	involve the	compare Type 1		
photosynthesis is	develop drugs	cancers. •	Students	economic	conscious part	and Type 2		
reduced. It is spread in	that kill	Immune	should	importanc	of the brain.	diabetes and		
the environment by	viruses	reactions	understan	e in the		explain how		
water or wind. Rose	without also	initially caused	d and use	manufactu		they can be		
black spot can be	damaging the	by a pathogen	inverse	re of bread		treated. WS 1.3		
treated by using	body's tissues	can trigger	proportion	and		Evaluate		
fungicides and/or		allergies such as	– the	alcoholic		information		
removing and	4.3.1.9	skin rashes and	inverse	drinks.		around the		
destroying the affected	Discovery and	asthma. •	square law			relationship		
leaves.	development	Severe physical	and light	4.4.2.2		between		
	of drugs	ill health can	intensity in	Response		obesity and		
4.3.1.5. Protist	Students	lead to	the	to exercise		diabetes, and		
diseases	should be	depression and	context of	During		make		
The pathogens that	able to	other mental	photosynt	exercise		recommendatio		
cause malaria are	describe the	illness. Students	hesis. (HT	the human		ns taking into		
protists. The malarial	process of	should be able	only)	body		account social		
protist has a life cycle	discovery and	to translate	Limiting	reacts to		and ethical		
that includes the	development	disease	factors are	the		issues. Students		
mosquito. Malaria	of potential	incidence	important	increased		should be able		
causes recurrent	new	information	in the	demand		to extract		
episodes of fever and	medicines,	between	economics	for		information and		
can be fatal. The	including	graphical and	of	energy.		interpret data		
spread of malaria is	preclinical and	numerical	enhancing	The heart		from graphs		
controlled by	clinical	forms,	the	rate,		that show the		
preventing the vectors,	testing.	construct and	conditions	breathing		effect of insulin		
mosquitos, from	Traditionally	interpret	in	rate and		in blood		

hundring and humaing	davage vie ae	fragence	ana amb au a	huaath	
breeding and by using	drugs were	rrequency	greennous	breath	
mosquito nets to avoid	extracted	tables and	es to gain	volume	both people
being bitten.	from plants	diagrams, bar	the .	Increase	with diabetes
	and .	charts and	maximum	auring	and people
	microorganis	histograms, and	rate of	exercise to	without
	ms. • The	use a scatter	photosynt	supply the	diabetes. MS 2c
	heart drug	diagram to	hesis while	muscles	(HI only) If the
	digitalis	identify a	still	with more	blood glucose
	originates	correlation	maintainin	oxygenate	concentration is
	from	between two	g profit.	d blood.	too low, the
	foxgloves.	variables.		lf	pancreas
	The painkiller		4.4.1.3.	insufficient	produces the
	aspirin	4.2.2.6 The	Uses of	oxygen is	hormone
	originates	effect of	glucose	supplied	glucagon that
	from willow.	lifestyle on	from	anaerobic	causes glycogen
	Penicillin was	some non-	photosynt	respiration	to be converted
	discovered by	communicable	hesis	takes	into glucose
	Alexander	diseases	The	place in	and released
	Fleming from	Students should	glucose	muscles.	into the blood.
	the	be able to: •	produced	The	(HT only)
	Penicillium	discuss the	in	incomplet	Students should
	mould. Most	human and	photosynt	е	be able to
	new drugs are	financial cost of	hesis may	oxidation	explain how
	synthesised	these non-	be: • used	of glucose	glucagon
	by chemists in	communicable	for	causes a	interacts with
	the	diseases to an	respiration	build up of	insulin in a
	pharmaceutic	individual, a	•	lactic acid	negative
	al industry.	local	converted	and	feedback cycle
	However, the	community, a	into	creates an	to control blood
	starting point	nation or	insoluble	oxygen	glucose (sugar)
	may still be a	globally •	starch for	debt.	levels in the
	chemical	explain the	storage •	During	body.
	extracted	effect of	used to	long	
	from a plant.	lifestyle factors	produce	periods of	4.5.3.4
	New medical	including diet,	fat or oil	vigorous	Hormones in
	drugs have to	alcohol and	for storage	activity	human
	be tested and	smoking on the	 used to 	muscles	reproduction
	trialled before	incidence of	produce	become	
	being used to	non-	cellulose,	fatigued	Students should
	check that	communicable	which	and stop	be able to

the	ey are safe	diseases at	strengthen	contractin	describe the
and	d effective.	local, national	s the cell	g	roles of
Nev	w drugs are	and global	wall •	efficiently.	hormones in
exte	tensively	levels.	used to		human
test	sted for	Risk factors are	produce	HT only)	reproduction,
toxi	kicity,	linked to an	amino	Blood	including the
effi	icacy and	increased rate	acids for	flowing	menstrual
dos	se.	of a disease.	protein	through	cycle. During
Pre	eclinical	They can be: •	synthesis.	the	puberty
test	sting is	aspects of a	То	muscles	reproductive
don	ne in a	person's	produce	transports	hormones
labo	oratory	lifestyle •	proteins,	the lactic	cause
usir	ing cells,	substances in	plants also	acid	secondary sex
tiss	sues and	the person's	use nitrate	to the liver	characteristics
live	e animals.	body or	ions that	where it is	to develop.
Clin	nical trials	environment. A	are	converted	Oestrogen is
use	e healthy	causal	absorbed	back into	the main
volu	lunteers	mechanism has	from the	glucose.	female
and	d patients.	been proven for	soil	Oxygen	reproductive
• V0	/ery low	some risk		debt is the	hormone
dos	ses of the	factors, but not		amount of	produced in the
dru	ug are given	in others. • The		extra	ovary. At
att	the start of	effects of diet,		oxygen the	puberty eggs
the	e clinical	smoking and		body	begin to mature
tria	al. • If the	exercise on		needs	and one is
dru	ug is found	cardiovascular		after	released
to b	be safe,	disease. •		exercise to	approximately
furt	ther clinical	Obesity as a risk		react with	every 28 days.
tria	als are	factor for Type		the	This is called
cari	rried out to	2 diabetes. •		accumulat	ovulation.
finc	d the	The effect of		ed lactic	Testosterone is
opt	timum dose	alcohol on the		acid and	the main male
for	the drug. •	liver and brain		remove it	reproductive
In d	double	function. • The		from the	hormone
blin	nd trials,	effect of		cells.	produced by
som	me patients	smoking on			the testes and it
are	e given a	lung disease		4.4.2.3	stimulates
plac	acebo	and lung		Metabolis	sperm
		cancer. • The		m	production.
		effects of			Several

smoking and	Metabolis	hormones are
alcohol on	m is the	involved in the
unborn babies.	sum of all	menstrual cycle
 Carcinogens, 	the	of a woman. •
including	reactions	Follicle
ionising	in a cell or	stimulating
radiation, as	the body.	hormone (FSH)
risk factors in	The energy	causes
cancer. Many	transferre	maturation of
diseases are	d by	an egg in the
caused by the	respiration	ovary. •
interaction of a	in cells is	Luteinising
number of	used by	hormone (LH)
factors.	the	stimulates the
	organism	release of the
4.2.2.7. Cancer	for the	egg. •
Students should	continual	Oestrogen and
be able to	enzyme	progesterone
describe cancer	controlled	are involved in
as the result of	processes	maintaining the
changes in cells	of	uterus lining.
that lead to	metabolis	(HT only)
uncontrolled	m that	Students should
growth and	synthesise	be able to
division. Benign	new	explain the
tumours are	molecules.	interactions of
growths of	Metabolis	FSH, oestrogen,
abnormal cells	m	LH and
which are	includes:	progesterone,
contained in	••	in the control of
one area,	conversion	the menstrual
usually within a	of glucose	cycle. (HT only)
membrane.	to starch,	Students should
They do not	glycogen	be able to
invade other	and	extract and
parts of the	cellulose	interpret data
body.	•• the	from graphs
Malignant	formation	showing
tumour cells are	of lipid	hormone levels
cancers. They	molecules	during the
cancers. They	morecules	

invade	from a	menstrual		
neighbouring	molecule	cycle		
tissues and	of glycerol			
spread to	and three	4535		
different parts	molecules	contracention		
of the body in	of fatty	Eartility can be		
the blood	acids	controlled by a		
where they		variety of		
form socondary	of glucoso	hormonal and		
tumours	and nitrate	non-bormonal		
Scientists have	ions to	methods of		
identified	form	contracention		
lifostylo risk	amino	Those include:		
factors for	annio			
various types of	acius which in	contracontivos		
cancer There	turn	that contain		
cancer. mere	turn are used	that contain hormonos to		
risk factors for	to	indimones to		
	to synthesise	Initial FSH		
some cancers.	synthesise			
	proteins	so that no eggs		
	no primeti e p			
	respiration	•• Injection,		
	••	Implant or skin		
	breakdow			
	n or excess	release		
	proteins to	progesterone to		
	form urea			
	excretion.	and release of		
		eggs for a		
		number of		
		months or		
		years		
		•• barrier		
		as condoms and		
		diaphragms		
		which prevent		
		the		
			sperm reaching	
--	--	--	----------------------------------	--
			an egg	
			 intrauterine 	
			devices which	
			prevent the	
			implantation of	
			an embryo or	
			release a	
			hormone	
			•• spermicidal	
			agents which	
			kill or disable	
			sperm	
			•• abstaining	
			from	
			intercourse	
			when an egg	
			may be in the	
			oviduct	
			methods of	
			male and	
			female	
			sterilisation	
			1 5 3 6 The use	
			of hormones to	
			treat infertility	
			This includes	
			giving ESH and	
			giving Fondilu	
			drug' to a	
			urug to a	
			woman. She	
			may then	
			pecome	
			pregnant in the	
			normal way.	

In Vitro Fertilisation (VP) treatment. ••VF involves giving a mother FSH and LH to Stimulate the maturation of several eggs. ••The eggs are collected from the mother and fertilised by sperm from the father in the father in the laboratory. ••The fertilised egg develop into embryos. ••* At the stage when they are timy bails of cells, one or two embryos are inserted into the meth's uterus (womb). 4.5.3.7 Negative feedback (IT on)) Adrenaine is produced by the adrenal glends in times of fear or stress. It						
Fertilisation (IVF) treatment. • IVF involves giving a mother FSt and Lit to stimulate the maturation of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the laboratory. •• The fertilised eggs develop into embryos. •• At the stage when they are tiny halls of cells, one or two embryos are tiny halls of cells, one or two embryos are tiny halls of the mother's turers (womb). 4.5.3.7 Negative feedback (IFI on's) Adrenaline is produced by the adrenal glands in times of fear or of the balls of of fear or of fe				In Vitro		
Image: set of the set of				Fertilisation		
••• IVF involves giving a mother FSH and LH to stimulate the maturation of several eggs. ••• The eggs are collected from the mother and fertilised by sperm from the father in the aboratory. ••• The filled egg develop into embryos. ••• The filled egg develop into embryos. ••• At the stage when they are timy balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the darenal giands in times of far or or				(IVF) treatment.		
giving a mother FSH and LH to stimulate the maturation of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the father in the father in the boratory. • The fertilised eggs develop into embryos. • A the stage when they are timy bails of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (IT only) Adrenaline is produced by the adrenal glands in times of fear or Stress. It				 IVF involves 		
FSH and LH to stimulate the maturation of several eggs. of the mather and fertilised by spem from the father in the father in the father in the taber of the mother's into embryos. • At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 45.3.7 Negative feedback (HT only Adrenaline is produced by the adrenal glads in times of fear or stress, it				giving a mother		
strend by the stage strend by the stage strend by the stage strend by sperm from the mother in the laboratory. •• The fertilised by sperm from the father in the laboratory. •• The fertilised of line embryos. •• At the stage strend by strend by strend by sperm from the stage strend by sperm from the stage strend by sperm from the strend by				FSH and LH to		
maturation of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the father in the father in the father or the father in the father or the father in the father or the father in the babratory. • The fertilised eggs develop into embryos. • At the stage when they are tiny bails of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (IT only) Afrenaline is produced by the adrenal glands in times of fear or stress, It stress.				stimulate the		
of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the laboratory, • The fertilised eggs develop into embryos. • At the stage when they are timy balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (IT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				maturation		
•• The eggs are collected from the mother and fertilised by sperm from the father in the laboratory. •• The fertilised eggs develop into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				of several eggs.		
collected from the mother and fertilised by sperm from the father in the laboratory. •• The fertilised eggs develop into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 45.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress, it				•• The eggs are		
the mother and fertilised by sperm from the faboratory. •• The fertilised eggs develop into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 45.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress, it				collected from		
Image: second				the mother and		
sperm from the father in the laboratory. •• The fertilised eggs develop into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				fertilised by		
Image: state in the father in the laboratory. • The father in the laboratory. • The father in the laboratory. • The father in the laboratory. • The father in the stage eggs develop into embryos. • At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). • At the complexity of the stage is the				, sperm from		
the laboratory. The fertilised eggs develop into embryos. At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (IT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				the father in		
• • The fertilised eggs develop into embryos. • • At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb).				the laboratory.		
eggs develop into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				•• The fertilised		
into embryos. •• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				eggs develop		
•• At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb).				into embryos.		
when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				•• At the stage		
tiny balls of cells, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				when they are		
cels, one or two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				, tiny balls of		
two embryos are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				, cells. one or		
are inserted into the mother's uterus (womb). 4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				two embryos		
Image: second				are		
Image: second				inserted into		
Image: second				the mother's		
4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				uterus (womb).		
4.5.3.7 Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				, , , , , , , , , , , , , , , , , , ,		
Negative feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				4.5.3.7		
feedback (HT only) Adrenaline is produced by the adrenal glands in times of fear or stress. It				Negative		
Image: series of the series				feedback (HT		
Adrenaline is produced by the adrenal glands in times of fear or stress. It				only)		
produced by the adrenal glands in times of fear or stress. It				Adrenaline is		
the adrenal glands in times of fear or stress. It				produced by		
glands in times of fear or stress. It				the adrenal		
of fear or stress. It				glands in times		
stress. It				of fear or		
				stress. It		

					increases the		
					heart rate and		
					boosts the		
					delivery of		
					oxygen and		
					glucose		
					to the brain and		
					muscles,		
					preparing the		
					body for 'flight		
					or fighť.		
					Thyroxine from		
					the thyroid		
					gland		
					stimulates the		
					basal metabolic		
					rate. It		
					plays an		
					important role		
					in growth and		
					development.		
					Thyroxine levels		
					are controlled		
					by negative		
					feedback		
Separate Science Key	4.3.3.1 Detection and	4.3.2.1.		4.5.2.2 The	4.5.4.1 Control	4.5.3.3	
Substantive	identification of plant	Producing		brain (biology	and	Maintaining	
Knowledge	diseases	monoclonal		only	coordination	water and	
Knowledge	HT only) Plant diseases	antibodies		Students	Plants produce	nitrogen balance	
	can be detected by: •	describe how		should be	hormones to	in the body	
	stunted growth • spots	monoclonal		able to	coordinate and	(biology only)	
	on leaves • areas of	antibodies are		identify the	control growth	Students should	
	decay (rot) • growths •	produced.		cerebral	and	be able to explain	
	malformed stems or	Monoclonal		cortex,		the effect on cells	

leaves • discolouration	antibodies are		cerebellum	responses to	of osmotic	
 the presence of 	produced		and	light	changes in body	
pests. (HT only)	from a single		medulla on a	(phototropism)	fluids. Water	
Identification can be	clone of cells.		diagram of	and gravity	leaves the body	
made by: • reference	The		the brain, and	(gravitropism or	via the lungs	
to a gardening manual	antibodies are		describe their	geotropism).	during exhalation.	
or website • taking	specific to one		functions.	Unequal	Water, ions and	
infected plants to a	binding site		(HT only)	distributions of	urea are lost from	
laboratory to identify	on one		Students	auxin cause	the skin in sweat.	
the pathogen • using	protein		should be	unequal growth	There is no	
testing kits that contain	antigen and		able to	rates	control over	
monoclonal antibodies.	so are able to		explain some	in plant roots	water, ion or urea	
Plants can be infected	target a		of the	and shoots.	loss by the lungs	
by a range of viral,	specific		difficulties of	(HT only)	or skin. Excess	
bacterial and fungal	chemical or		investigating	Gibberellins are	water, ions and	
pathogens as well as by	specific cells		brain function	important in	urea are removed	
insects. Knowledge of	in the body.		and treating	initiating seed	via the kidneys in	
plant diseases is	They are		brain damage	germination.	the urine. If body	
restricted to tobacco	produced by		and disease.	(HT only)	cells lose or gain	
mosaic virus as a viral	stimulating		(HT only)	Ethene controls	too much water	
disease, black spot as a	mouse		Neuroscientist	cell division and	by osmosis they	
fungal disease and	lymphocytes		s have been	ripening of	do not function	
aphids as insects.	to make a		able to map	fruits.	efficiently. (HT	
Plants can be damaged	particular		the regions of	(HT only) The	only) The	
by a range of ion	antibody. The		the	mechanisms of	digestion of	
deficiency conditions: •	lymphocytes		brain to	how	proteins from the	
stunted growth caused	are combined		particular	gibberellins and	diet results in	
by nitrate deficiency •	with a		functions by	ethene work	excess amino	
chlorosis caused by	particular kind		studying	are not	acids which need	
magnesium deficiency.	of tumour cell		patients with	Required.	to be excreted	
Knowledge of ions is	to make a cell		brain damage,		safely. In the liver	
limited to nitrate ions	called a		electrically	4.5.4.2 Use of	these amino acids	
needed for protein	hybridoma		stimulating	plant	are deaminated	
synthesis and therefore	cell. The		different parts	hormones (HT	to form ammonia.	
growth, and	hybridoma		of the brain	only)	Ammonia is toxic	
magnesium ions	cell can both		and using MRI	Plant growth	and so it is	1
needed to make	divide and		scanning	hormones are	immediately	1
chlorophyll	make the		techniques.	used in	converted to urea	
	antibody.		The	agriculture and	for safe excretion.	1
	Single		complexity	horticulture.	Students should	

4.3.3.2 Plant defence	hybridoma		and delicacy	Auxins are	be able to	
responses	cells are		of the brain	used:	describe the	
Students should be	cloned to		makes	 as weed 	function of	
able to describe	produce many		investigating	killers	kidneys in	
physical and chemical	identical cells		and treating	 as rooting 	maintaining the	
plant defence	that all		brain	powders	water balance of	
responses. Physical	produce the		disorders very	•• for	the body. The	
defence responses to	same		difficult.	promoting	kidneys produce	
resist invasion of	antibody. A			growth in tissue	urine by filtration	
microorganisms. •	large amount		4.5.2.3 The	culture.	of the blood and	
Cellulose cell walls. •	of the		eye (biolo	Ethene is used	selective	
Tough waxy cuticle on	antibody can		gy only)	in the food	reabsorption of	
leaves. • Layers of	be collected			industry to	useful substances	
dead cells around	and purified.		Students	control ripening	such as glucose,	
stems (bark on trees)			should be	of fruit during	some ions and	
which fall off. Chemical	4.3.2.2. Uses		able to relate	storage and	water. Knowledge	
plant defence	of		the structures	transport.	of other parts of	
responses.	monoclonal		of the eye to	Gibberellins can	the urinary	
Antibacterial	antibodies		their	be used to:	system, the	
chemicals. • Poisons to	Students		functions. This	 end seed 	structure of the	
deter herbivores.	should be		includes:	dormancy	kidney and the	
Mechanical	able to		••	 promote 	structure of a	
adaptations. • Thorns	describe some		accommodati	flowering	nephron is not	
and hairs deter	of the ways in		on to focus on	 increase fruit 	required.	
animals. • Leaves	which		near or	size.	Students should	
which droop or curl	monoclonal		distant		be able to	
when touched. •	antibodies can		objects		translate tables	
Mimicry to trick	be used.		 adaptation 		and bar charts of	
animals	Some		to dim light.		glucose, ions and	
	examples		The eye is a		urea before and	
	include: • for		sense organ		after filtration.	
	diagnosis such		containing		MS 4a (HT only)	
	as in		receptors		Students should	
	pregnancy		sensitive to		be able to	
	tests • in		light intensity		describe the	
	laboratories		and colour.		effect of ADH on	
	to measure				the permeability	
	the levels of		identify the		of the kidney	
	hormones and		following		tubules. (HT only)	
	other				The water level in	

chemicals in	structures on	the body is
blood, or to	a diagram	controlled by the
detect	of the eye and	hormone ADH
pathogens •	explain how	which acts on the
in research to	their structure	kidney tubules.
locate or	is related to	ADH is released
identify	their function:	by the pituitary
specific	•• retina	gland when the
molecules in a	•• optic nerve	blood is too
cell or tissue	•• sclera	concentrated and
by binding to	•• cornea	it causes more
them with a	•• iris	water to be
fluorescent	•• ciliary	reabsorbed back
dye • to treat	muscles	into the blood
some	•• suspensory	from the kidney
diseases: for	ligaments.	tubules. This is
cancer the		controlled by
monoclonal	To focus on a	negative
antibody can	near object:	feedback. People
be bound to a	•• the ciliary	who suffer from
radioactive	muscles	kidney failure may
substance, a	contract	be treated by
toxic drug or a	•• the	organ transplant
chemical	suspensory	or by using kidney
which stops	ligaments	dialysis. Students
cells growing	loosen	should know the
and dividing.	•• the lens is	basic principles of
It delivers the	then thicker	dialysis.
substance to	and refracts	
the cancer	light rays	
cells without	strongly.	
harming other	To focus on a	
cells in the	distant object:	
body.	•• the ciliary	
Students are	muscles relax	
not expected	•• the	
to recall any	suspensory	
specific tests	ligaments are	
or treatments	pulled tight	
but given		

appropria	e	•• the lens is	
informatio	n	then pulled	
they shou	d	thin and only	
be able to		slightly	
explain ho	w	refracts light	
they work		rays.	
Monoclon	al	Two common	
antibodies		defects of the	
create mo	re l	eyes are	
side effect	s	myopia (short	
than		sightedness)	
expected.		and	
They are r	ot	hyperopia	
vet as wid	elv	long	
used as		sightedness)	
evervone		in which rays	
hoped wh	en	of light do not	
they were		focus on the	
first		retina.	
developed		•• Generally	
		these defects	
		are treated	
		with spectacle	
		lenses which	
		refract the	
		light rays so	
		that they do	
		focus on the	
		retina	
		•• New	
		technologies	
		now include	
		hard and soft	
		contact	
		lenses, laser	
		surgery to	
		change the	
		shape of the	
		cornea and a	
		corrica ana a	

						replacement lens in the eye.			
Examples of Key Disciplinary Knowledge (methods/framewor k to establish knowledge)	(biology only) investigate the effect of antiseptics or antibiotics on bacterial growth	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods	Investigate the effect of light intensity on the rate of photosynt hesis	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measuremen ts and health and safety consideration s. WS 2.6 – make and record observations and measuremen ts using a range of apparatus and methods	Plan and carry out an investigation into the effect of a factor on human reaction time. extract and interpret data from graphs, charts and tables, about the functioning of the nervous system.	(biology only)) Investigate the effect of light or gravity on the growth of germinating seeds	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods	
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down)	Biology only RP5 Microbes (biology only) investigate the effect of antiseptics or antibiotics on bacterial growth using agar plates and measuring zones of inhibition			Biology RP 6 Photosynt hesis Investigate the effect of light intensity on the rate of photosynt		Biology RP 7 Reaction times Plan and carry out an investigation into the effect of a factor on human reaction time.	Biology only RP 8 Germination (biology only)) Investigate the effect of light or gravity on the growth of germinating seeds. Record results as both length		

Examples of Reading Opportunity	Libert Gastier	Discourse		hesis using an aquatic organism such as pondweed	Descourse	Desetion	measurements and as careful, labelled biological drawings to show the effect		
2 Vocabulary	symptom	produce	KISK, Ellect	factor	increase	function	coordination	Loss, regulates	
Examples of Key Tier 3 Vocabulary	Communicable, non- communicable, agar, measles, virus, bacteria, salmonella, STI, rose black spot, proists, malaria, immune system, skin, mucus, cilia	Vaccination, herd immunity, double blind trials, pre- clinical, clinical trials, placebo, monoclonal	Cancer, tumour benign, malignant, carcinogens, diabetes, alcohol, radiation,	Glucose, endother mic, photosynt hesis, adaptation s, light, temperatu re, cellulose, starch, greenhous e,	Aerobic, anaerobic, exothermi c, mitochond ria, glycogen, lactic acid, oxygen debt, liver	Homeostasis, receptors, stimuli, effectors, neurones, sensory, motor neurones, reflex , relay, synapse, brain,. Cerebral cortex, cerebellum, medulla, suspensory ligaments, ciliary muscles, myopia, hyperopia	Endocrine, hormones, insulin, adrenaline, gland, pituitary, oestrogen, testosterone, FSH, ovaries, pancreas, thyroid, adrenal, testes, diabetes, glucagon, negative feedback, puberty, menstrual cycle, LH, progesterone, contraception, infertility treatment, phototropism, gravitropism, auxins,	Thermoregulatory , vasodilation, vasoconstriction, kidneys, ADH, dialysis	

Examples of		trar	anslate		
Numeracy		info	formation		
realificities		abo	oout		
		rea	action times		
		bet	etween		
		nun	umerical and		
		gra	aphical		
		forr	rms.		

Year 11

<u>Biology</u>

Concept	Organisms	Ecosystems			Genes			
Unit Title		B16 Adaptations, Interdependence and competition	B17 Organising an Ecosystem	B18 Biodiversity and Ecosystems	B13 Reproduction	B14 variation and Evolution	B15 Genetics and Evolution	
Comprising Of (use spec subtitle main sections, not subsections, indicate chem only or subsection chem only-see AN example)		B16.1 The importance of communities B16.2 Organisms in their environment B16.3 Distribution and Abundance B16.4 Competition in animals B16.5 Competition In plants	B17.1 Feeding relationships (biology) B17.2 materials cycling B17.3 The carbon Cycle B17.4 Rates of decomposition (biology)	B18.1 The Human population explosion B18.2 land and water pollution B18.3 Air pollution B18.4 Deforestation and peat destruction B18.5 Global warming	B13.1 Types of reproduction B13.2 Cell division in sexual reproduction B13.3 The best of both worlds(biology) B13.4 DNA and the genome B13.5 DNA structure and Protein synthesis (Biology)	B14.1 Variation B14.2 Evolution by natural selection B14.3 Selective breeding B14.4 Genetic engineering B14.5 Cloning (Biology) B14.6 adult cell cloning (biology)	B15.1 The history of genetic (biology) B15.2 Theories of evolution (biology) B15.3 Accepting Darwin's ideas (Biology) B15.4 Evolution and speciation (Biology) B15.5 Evidence for evolution	

	B16.6 Adapt and survive B16.7 Adaptation in animals B16.8 Adaptation in plants		B18.6 The impact of change (biology) B18.7 maintaining biodiversity B18.8 Trophic levels and biomass (biology) B18.9 Biomass transfers B18.10 factors affecting food security (biology) B18.11 making food production more efficient (biology) B18.12 Sustainable food production(biology)	B13.6 Gene expression and mutation (Biology) B13.7 Inheritance in action B13.8 More about genetics B18.9 Inherited disorders B13.10 Screening for genetic disorders	B14.7 Ethics of genetic technologies	B15.6 Fossils and extinction B15.7 More about extinction B15.8 Antibiotic resistant bacteria B15.9 Classification B15.10 New systems of classification
Composite Knowledge/End Point (big idea that should be answered at the end of a unit)	Recall the precise meaning of community, population, habitat, ecosystem, abiotic factor, and biotic factor. Explain how organisms are adapted to their environments-with examples. Measured the distribution of organisms with quadrats and transects.	Recall the main feeding relationships within a community and understand how the numbers of predators and prey are inter-related Understand how materials are recycled List factors that affect decomposition and the rate of decay.	Explain the reasons for and the effects of the human population explosion. understand the effect of different types of pollution including land, water, and air pollution. give examples of some of the actions being taken to stop the reduction in biodiversity. how biomass is transferred from one trophic level to the next, pyramids	Explain main differences between sexual and asexual reproduction. How sexual reduction results in variation. Understand the benefits of studying the human genome Be able to interpret and construct punnet squares Explain how some disorders on inherited	What causes variation How evolution is linked to natural selection. What is selective breeding. The principles of genetic engineering and how it can applied to help crops grow Discuss the advantages and disadvantages of genetic engineering/GMO	Explain the theory of evolution and identify evidence for the theory Explain how new species arise Explain how organisms can become extinct. What is meant by antibiotic resistance and how it arises, what can be done to reduce it happening The principles of the classification system, why and how it has changed over time

			of biomass, and the			
			efficiency of this			
			energy transfer			
Examples of Key 4.7	7.1.1	4.7.2.1 Levels of	4.7.3.1 Biodiversity	4.6.1.2 Meiosis	4.6.2.1 Variation	4.6.3.4 Evidence for
Substantive Knowledge	ommunities	organisation	Biodiversity is the	Cells in reproductive	Differences in the	evolution
Substantive knowledge Stu	udents should be	Students should	variety of all the	organs divide by	characteristics of	Students should be
(specific subject abl	le to describe:	understand that	different species of	meiosis to form	individuals in a	able to describe the
knowledge relied upon for	different levels of	photosynthetic	organisms on earth,	gametes. When a cell	population is called	evidence for evolution
later study or to grasp the org	ganisation in an	organisms are the	or within an	divides to form	variation and may be	including fossils and
composite idea for that eco	osystem from	producers of biomass	ecosystem. A great	gametes:	due to differences in: •	antibiotic resistance in
unit) inc	dividual	for life on Earth.	biodiversity ensures	 copies of the genetic 	the genes they have	bacteria. The theory of
org	ganisms to the	Feeding relationships	the stability of	information are made	inherited (genetic	evolution by natural
wh	hole ecosystem •	within a community	ecosystems by	 the cell divides twice 	causes) • the	selection is now widely
the	e importance of	can be represented	reducing the	to form four gametes,	conditions in which	accepted. Evidence for
int	terdependence	by food chains. All	dependence of one	each with a single set	they have developed	Darwin's theory is now
and	nd competition in	food chains begin	species on another	of chromosomes	(environmental causes)	available as it has been
ac	community.	with a producer	for food, shelter	 all gametes are 	 a combination of 	shown that
Stu	udents should be	which synthesises	and the	genetically different	genes and the	characteristics are
abl	ole to, when	molecules. This is	maintenance of the	from each other.	environment. Students	passed on to offspring
pro	ovided with	usually a green plant	physical	Gametes join at	should be able to:	in genes. There is
ap	propriate	or alga which makes	environment. The	fertilisation to restore	 state that there is 	further evidence in the
inf	formation:	glucose by	future of the human	the normal number of	usually extensive	fossil record and the
• S	suggest the	photosynthesis. A	species on Earth	chromosomes. The	genetic variation	knowledge of how
fac	ctors for which	range of	relies on us	new cell divides by	within a population of	resistance to
Org	ganisms are	experimental	maintaining a good	mitosis. The number of	a species	antibiotics evolves in
COI	ompeting in a	methods using	level of biodiversity.	cells increases. As the	• recall that all variants	bacteria.
giv	ven habitat	transects and	Many human	embryo develops cells	arise from mutations	
• s	suggest how	quadrats are used by	activities are	differentiate	and that: most have no	4.6.3.5 Fossils
org	ganisms are	ecologists to	reducing		effect on the	Fossils are the
ada	lapted to the	determine the	biodiversity and	4.6.1.4 DNA and the	phenotype; some	remains' of organisms
COI	inditions in which	distribution and	only recently have	genome	influence phenotype;	from millions of years
the	ey live. An	abundance of species	measures been	The genetic material in	very few determine	ago, which are found in
eco	OSVSTem IS THE	in an ecosystem in	laken to trv to stop	the nucleus of a cell IS	Difference processing the processing of the proc	TOCKS. FOSSIIS MAY DE
Int	toraction of a	relation to	this roduction	composed of a	occur continuedu	formed
COI	teraction of a	relation to	this reduction.	composed of a	occur continuously.	formed:
	teraction of a mmunity of living	relation to abundance of	this reduction.	composed of a chemical called DNA.	occur continuously. Very rarely a mutation	formed: • from parts of organisms that have
org	teraction of a mmunity of living ganisms (biotic)	relation to abundance of organisms students	this reduction. 4.7.3.2 Waste	composed of a chemical called DNA. DNA is a polymer made up of two	occur continuously. Very rarely a mutation will lead to a new	formed: • from parts of organisms that have not docaved bacause

		Devid serveth in the	devible belie The DNA		
Te averies and	terms mean, mode	Rapid growth in the	double helix. The DNA		conditions needed for
To survive and	and median •	numan population	is contained in	change it can lead to a	decay are absent
reproduce,	calculate arithmetic	and an increase in	structures called	relatively rapid change	• when parts of the
organisms require	means • plot and	the standard of	chromosomes. A gene	in the species.	organism are replaced
a supply of	draw appropriate	living mean that	is a small section of		by minerals as they
materials from	graphs selecting	increasingly more	DNA on a	4.6.2.2 Evolution	decay
their surroundings	appropriate scales	resources are used	chromosome. Each	Students should be	• as preserved traces
and from the other	for the axes.	and more waste is	gene codes for a	able to describe	of organisms, such as
living organisms		produced. Unless	particular sequence of	evolution as a change	footprints, burrows
there. Plants in a	Producers are eaten	waste and chemical	amino acids, to make a	in the inherited	and rootlet traces.
community or	by primary	materials are	specific protein. The	characteristics of a	
habitat often	consumers, which in	properly handled,	genome of an	population over time	Many early forms of
compete with each	turn may be eaten by	more pollution will	organism is the entire	through a process of	life were soft-bodied,
other for light and	secondary consumers	be caused. Pollution	genetic material of	natural selection which	which means that they
space, and for	and then tertiary	can occur: • in	that organism. The	may result in the	have left few traces
water and mineral	consumers.	water, from	whole human genome	formation of a new	behind. What traces
ions from the soil.	Consumers that kill	sewage, fertiliser or	has now been studied	species. The theory of	there were have been
Animals often	and eat other	toxic chemicals • in	and this will have great	evolution by natural	mainly destroyed by
compete with each	animals are	air, from smoke and	importance for	selection states that all	geological activity. This
other for food,	predators, and those	acidic gases • on	medicine in the future.	species of living things	is why scientists cannot
mates and	eaten are prey. In a	land, from landfill		have evolved from	be certain about how
territory. Within a	stable community	and from toxic	Students should be	simple life forms that	life began on Earth.
community each	the numbers of	chemicals. Pollution	able to discuss the	first developed more	
species depends on	predators and prey	kills plants and	importance of	than three billion years	We can learn from
other species for	rise and fall in cycles.	animals which can	understanding the	ago. Students should	fossils how much or
food, shelter,		reduce biodiversity	human genome. This is	be able to explain how	how little different
pollination, seed	4.7.2.2 How		limited to the:	evolution occurs	organisms have
dispersal etc. If one	materials are cycled	4.7.3.3. Land use	 search for genes 	through natural	changed as life
species is removed	Students should: •	Humans reduce the	linked to different	selection of variants	developed on Earth
it can affect the	recall that many	amount of land	types of disease	that give rise to	
whole community.	different materials	available for other	 understanding and 	phenotypes best suited	4.6.3.6 Extinction
This is called	cycle through the	animals and plants	treatment of inherited	to their environment.	Extinctions occur when
interdependence. A	abiotic and biotic	by building,	disorders	If two populations of	there are no remaining
stable community	components of an	quarrying, farming	 use in tracing human 	one species become so	individuals of a species
is one where all the	ecosystem • explain	and dumping waste.	migration patterns	different in phenotype	still alive. Students
species and	the importance of	The destruction of	from the past	that they can no longer	should be able to
environmental	the carbon and water	peat bogs, and		interbreed to produce	describe factors which
factors are in	cycles to living	other areas of peat	4.6.1.6 Genetic	fertile offspring they	may contribute to the
balance so that	organisms. All	to produce garden	inheritance	have formed two new	extinction of a species.
population sizes	materials in the living	compost, reduces		species.	

remain fairly	world are recycled to	the area of this	Students should be		4.6.3.7 Resistant
constant.	provide the building	habitat and thus the	able to explain the	4.6.2.3 Selective	bacteria
	blocks for future	variety of different	terms:	breeding	
4.7.1.2 Abiotic	organisms. The	plant, animal and	 gamete 	Selective breeding	Bacteria can evolve
factors	carbon cycle returns	microorganism	 chromosome 	(artificial selection) is	rapidly because they
Students should be	carbon from	species that live	• gene	the process by which	reproduce at a fast
able to explain how	organisms to the	there (biodiversity).	• allele	humans breed plants	rate. Mutations of
a change in an	atmosphere as	The decay or	 dominant 	and animals for	bacterial pathogens
abiotic factor	carbon dioxide to be	burning of the peat	 recessive 	particular genetic	produce new strains.
would affect a	used by plants in	releases carbon	 homozygous 	characteristics.	Some strains might be
given community	photosynthesis. The	dioxide into the	 heterozygous 	Humans have been	resistant to antibiotics,
given appropriate	water cycle provides	atmosphere.	 genotype 	doing this for	and so are not killed.
data or context.	fresh water for plants		 phenotype. 	thousands of years	They survive and
Abiotic (non-living)	and animals on land	4.7.3.4.	Some characteristics	since they first bred	reproduce, so the
factors which can	before draining into	Deforestation	are controlled by a	food crops from wild	population of the
affect a community	the seas. Water is	Large-scale	single gene, such as:	plants and	resistant strain rises.
are: • light	continuously	deforestation in	fur colour in mice; and	domesticated animals.	The resistant strain will
intensity •	evaporated and	tropical areas has	red-green colour		then spread because
temperature •	precipitated.	occurred to: •	blindness in humans.	Selective breeding	people are not immune
moisture levels •	Students are not	provide land for	Each gene may have	involves choosing	to it and there is no
soil pH and mineral	expected to study	cattle and rice fields	different forms called	parents with the	effective treatment.
content • wind	the nitrogen cycle.	 grow crops for 	alleles. The alleles	desired characteristic	MRSA is resistant to
intensity and	Students should be	biofuels.	present, or genotype,	from a mixed	antibiotics. To reduce
direction • carbon	able to explain the		operate at a molecular	population. They are	the rate of
dioxide levels for	role of	4.7.3.5 Global	level to develop	bred together. From	development of
plants • oxygen	microorganisms in	warming	characteristics that can	the offspring those	antibiotic resistant
levels for aquatic	cycling materials	Students should be	be expressed as a	with the desired	strains:
animals.	through an	able to describe	phenotype. A	characteristic are bred	 doctors should not
	ecosystem by	some of the	dominant allele is	together. This	prescribe antibiotics
4.7.1.3. Biotic	returning carbon to	biological	always expressed,	continues over many	inappropriately, such
factors	the atmosphere as	consequences of	even if only one copy is	generations until all	as treating non-serious
Students should be	carbon dioxide and	global warming.	present. A recessive	the offspring show the	or viral infections
able to explain how	mineral ions to the	Levels of carbon	allele is only expressed	desired characteristic.	 patients should
a change in a biotic	soil.	dioxide and	if two copies are	The characteristic can	complete their course
factor might affect		methane in the	present (therefore no	be chosen for	of antibiotics so all
a given community		atmosphere are	dominant allele	usefulness or	bacteria are killed and
given appropriate		increasing, and	present). If the two	appearance:	none survive to mutate
data or context.		contribute to	alleles present are the	Disease resistance in	and form resistant
Biotic (living)		'global warming'	same the organism is	food crops.	strains
factors which can			homozygous for that		

affec	ct a community	4.7.3.6.	trait, but if the alleles	 Animals which 	 the agricultural use 	
are:	 availability of 	Maintaining	are different they are	produce more meat or	of antibiotics should be	
food	l • new	biodiversity	heterozygous. Most	milk.	restricted. The	
pred	lators arriving •	Students should be	characteristics are a	 Domestic dogs with a 	development of new	
new	pathogens •	able to describe	result of multiple	gentle nature.	antibiotics is costly and	
ones	species	both positive and	genes interacting,	 Large or unusual 	slow. It is unlikely to	
outc	competing	negative human	rather than a single	flowers	keep up with the	
anot	ther so the	interactions in an	gene.		emergence of new	
num	ibers are no	ecosystem and		Selective breeding can	resistant strains.	
long	er sufficient to	explain their impact	Students should be	lead to 'inbreeding'		
bree	ed	on biodiversity.	able to use direct	where some breeds	4.6.4 Classification of	
		Scientists and	proportion and simple	are particularly prone	living organisms	
4.7.1	1.4.	concerned citizens	ratios to express the	to disease or inherited	Traditionally living	
Adap	ptations	have put in place	outcome of a genetic	defects.	things have been	
Stud	lents should be	programmes to	cross.		classified into groups	
able	to explain how	reduce the negative	Students should be	4.6.2.4 Genetic	depending on their	
orga	inisms are	effects of humans	able to complete a	engineering	structure and	
adap	oted to live in	on ecosystems and	Punnett square	Students should be	characteristics in a	
their	r natural	biodiversity. These	diagram and extract	able to describe	system developed by	
envir	ronment, given	include: • breeding	and interpret	genetic engineering as	Carl Linnaeus. Linnaeus	
appr	ropriate	programmes for	information from	a process which	classified living things	
infor	rmation.	endangered species	genetic crosses and	involves modifying the	into kingdom, phylum,	
Orga	anisms have	 protection and 	family trees.	genome of an	class, order, family,	
featu	ures	regeneration of rare	(HT only) Students	organism by	genus and species.	
(ada	ptations) that	habitats •	should be able to	introducing a gene	Organisms are named	
enab	ple them to	reintroduction of	construct a genetic	from another organism	by the binomial system	
survi	ive in the	field margins and	cross by Punnett	to give a desired	of genus and species	
cond	ditions in which	hedgerows in	square diagram and	characteristic. Plant		
they	normally live.	agricultural areas	use it to make	crops have been	As evidence of internal	
Thes	se adaptations	where farmers	predictions using the	genetically engineered	structures became	
may	be structural,	grow only one type	theory of probability.	to be resistant to	more developed due to	
beha	avioural or	of crop • reduction		diseases or to produce	improvements in	
func	tional. Some	of deforestation	4.6.1.7 Inherited	bigger better fruits.	microscopes, and the	
orga	inisms live in	and carbon dioxide	disorders	Bacterial cells have	understanding of	
envir	ronments that	emissions by some	Some disorders are	been genetically	biochemical processes	
are v	very extreme,	governments •	inherited. These	engineered to produce	progressed, new	
such	h as at high	recycling resources	disorders are caused	useful substances such	models of classification	
temp	perature,	rather than	by the inheritance of	as human insulin to	were proposed. Due to	
press	sure, or salt	dumping waste in	certain alleles.	treat diabetes.	evidence available	
conc	centration.	landfill.				

Those ergenisms	Polydactyly (baying	Students should be	from chemical analysis
	• Polyuactyry (naving	students should be	there is now a 'three
are called	extra ingers or toes) is	able to explain the	demain system?
extremophiles.		ricks of gonatio	domain system
Bacteria IIVIng III	allele.		developed by Carl
deep sea vents ar	• Cystic fibrosis (a	engineering in	woese. In this system
extremophiles.	disorder of cell	agriculture and in	organisms are divided
	membranes) is caused	medicine and that	into:
	by a recessive allele.	some people have	• archaea (primitive
	Students should make	objections.	bacteria usually living
	informed judgements		in extreme
	about the economic,	Crops that have had	environments)
	social and ethical	their genes modified in	 bacteria (true
	issues concerning	this way are called	bacteria)
	embryo screening,	genetically modified	 eukaryota (which
	given appropriate	(GM) crops. GM crops	includes protists, fungi,
	information.	include ones that are	plants and animals)
		resistant to insect	
	4.6.1.8 Sex	attack or to herbicides.	Evolutionary trees are
	determination	GM crops generally	a method used by
	Ordinary human body	show increased yields.	scientists to show how
	cells contain 23 pairs	Concerns about GM	they believe organisms
	of chromosomes. 22	crops include the	are related. They use
	pairs control	effect on populations	current classification
	characteristics only,	of wild flowers and	data for living
	but one of the pairs	insects. Some people	organisms and fossil
	carries the genes that	feel the effects of	data for extinct
	determine sex.	eating GM crops on	organisms
	• In females the sex	human health have not	-
	chromosomes are the	been fully explored.	
	same (XX).	Modern medical	
	• In males the	research is exploring	
	chromosomes are	the possibility of	
	different (XY). Students	genetic modification to	
	should be able to carry	overcome some	
	out a genetic cross to	inherited disorders	
	show sex inheritance		
		(HT only) Students	
		should be able to	
		describe the main	
		stens in the process of	
		steps in the process of	

					genetic engineering.	
					(HT only) In genetic	
					engineering:	
					 enzymes are used to 	
					isolate the required	
					gene; this gene is	
					inserted into a vector,	
					usually a bacterial	
					plasmid or a virus	
					 the vector is used to 	
					insert the gene into	
					the required cells	
					• genes are transferred	
					to the cells of animals.	
					plants or	
					microorganisms at an	
					early stage in their	
					development so that	
					they develop with	
					desired characteristics	
Sonarata Science Kou		4723	4741 Trophic	4 6 1 3 Advantages	4625 Cloning	4631 Theory of
Separate Science Key		4.7.2.3.	4.7.4.1 Trophic	4.6.1.3 Advantages	4.6.2.5 Cloning (biology only)	4.6.3.1 Theory of
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition	4.7.4.1 Trophic levels	4.6.1.3 Advantages and disadvantages of	4.6.2.5 Cloning (biology only)	4.6.3.1 Theory of evolution (biology
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be	4.7.4.1 Trophic levels Trophic levels can	4.6.1.3 Advantages and disadvantages of sexual and asexual	4.6.2.5 Cloning (biology only)	4.6.3.1 Theory of evolution (biology only)
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how	4.7.4.1 Trophic levels Trophic levels can be represented by	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology	4.6.2.5 Cloning (biology only) Tissue culture: using	4.6.3.1 Theory of evolution (biology only)
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only)	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to	4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only)	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to group identical pour	4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new	4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection.
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction:	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material.	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered	4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: • produces variation	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic.
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1:	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple,	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most in the selection.
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate information between	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1: Plants and algae	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection natural selection can 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most suited to the
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate information between numerical and	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1: Plants and algae make their own	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection natural selection can be speeded up by 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by gardeners to produce	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most suited to the environment are more
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate information between numerical and graphical form • plot	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1: Plants and algae make their own food and are called	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection natural selection can be speeded up by humans in selective 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by gardeners to produce many identical new	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most suited to the environment are more likely to survive to
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate information between numerical and graphical form • plot and draw	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1: Plants and algae make their own food and are called producers. Level 2:	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection natural selection can be speeded up by humans in selective breeding to increase 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by gardeners to produce many identical new plants from a parent	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most suited to the environment are more likely to survive to breed successfully.
Separate Science Key Substantive Knowledge		4.7.2.3. Decomposition Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material • translate information between numerical and graphical form • plot and draw appropriate graphs	4.7.4.1 Trophic levels Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain. Level 1: Plants and algae make their own food and are called producers. Level 2: Herbivores eat	 4.6.1.3 Advantages and disadvantages of sexual and asexual reproduction (biology only) Advantages of sexual reproduction: produces variation in the offspring if the environment changes variation gives a survival advantage by natural selection natural selection can be speeded up by humans in selective breeding to increase food production. 	4.6.2.5 Cloning (biology only) Tissue culture: using small groups of cells from part of a plant to grow identical new plants. This is important for preserving rare plant species or commercially in nurseries. Cuttings: an older, but simple, method used by gardeners to produce many identical new plants from a parent plant. Embryo	 4.6.3.1 Theory of evolution (biology only) Darwin proposed the theory of evolution by natural selection. Individual organisms within a particular species show a wide range of variation for a characteristic. Individuals with characteristics most suited to the environment are more likely to survive to breed successfully. The characteristics

selecting appropriate	are called primary	Advantages of asexual	apart cells from a	these individuals to
scales for the axes.	consumers. Level 3:	reproduction:	developing animal	survive are then
	Carnivores that eat	 only one parent 	embryo before they	passed on to the next
Gardeners and	herbivores are	needed	become specialised,	generation.
farmers try to	called secondary	 more time and 	then transplanting the	
provide optimum	consumers. Level 4:	energy efficient as do	identical embryos into	The theory of evolution
conditions for rapid	Carnivores that eat	not need to find a	host mothers	by natural selection
decay of waste	other carnivores are	mate		was only gradually
biological material.	called tertiary	 faster than sexual 	Adult cell cloning:	accepted because:
The compost	consumers. Apex	reproduction	 The nucleus is 	 the theory
produced is used as a	predators are	 many identical 	removed from an	challenged the idea
natural fertiliser for	carnivores with no	offspring can be	unfertilised egg cell.	that God made all the
growing garden	predators.	produced when	 The nucleus from an 	animals and plants that
plants or crops.	Decomposers break	conditions are	adult body cell, such as	live on Earth
Anaerobic decay	down dead plant	favourable	a skin cell, is inserted	• there was insufficient
produces methane	and animal matter		into the egg cell.	evidence at the time
gas. Biogas	by secreting	Some organisms	 An electric shock 	the theory was
generators can be	enzymes into the	reproduce by both	stimulates the egg cell	published to convince
used to produce	environment. Small	methods depending on	to divide to form an	many scientists
methane gas as a	soluble food	the circumstances. •	embryo.	 the mechanism of
fuel.	molecules then	Malarial parasites	 These embryo cells 	inheritance and
	diffuse into the	reproduce asexually in	contain the same	variation was not
4.7.2.4 Impact of	microorganism.	the human host, but	genetic information as	known until 50 years
environmental		sexually in the	the adult skin cell.	after the theory was
change	4.7.4.2 Pyramids of	mosquito. • Many	 When the embryo 	published.
Students should be	biomass	fungi reproduce	has developed into a	
able to evaluate the	Pyramids of	asexually by spores but	ball of cells, it is	4.6.3.2 Speciation
impact of	biomass can be	also reproduce	inserted into the	(biology only)
environmental	constructed to	sexually to give	womb of an adult	Students should be
changes on the	represent the	variation. • Many	female to continue its	able to:
distribution of	relative amount of	plants produce seeds	development.	 describe the work of
species in an	biomass in each	sexually, but also		Darwin and Wallace in
ecosystem given	level of a food	reproduce asexually by		the development of
appropriate	chain. Trophic level	runners such as		the theory of evolution
information.	1 is at the bottom	strawberry plants, or		by natural selection
Environmental	of the pyramid. WS	bulb division such as		 explain the impact of
changes affect the	1.2 Students should	daffodils.		these ideas on biology
distribution of	be able to construct			
species in an	accurate pyramids	4.6.1.5 DNA structure		Students should be
ecosystem. These		(biology only)		able to describe the

changes include: •	of biomass from	Students should be	steps which give rise to
temperature •	appropriate data	able to describe DNA	new species.
availability of water •		as a polymer made	
composition of	4.7.4.3. Transfer of	from four different	4.6.3.3 The
atmospheric gases.	biomass	nucleotides. Each	understanding of
The changes may be	Students should be	nucleotide consists of	genetics (biology only)
seasonal, geographic	able to: • describe	a common sugar and	Students should be
or caused by human	pyramids of	phosphate group with	able to:
interaction	biomass • explain	one of four different	 describe the
	how biomass is lost	bases attached to the	development of our
	between the	sugar. DNA contains	understanding of
	different trophic	four bases, A, C, G and	genetics including the
	levels. Producers	T. A sequence of three	work of Mendel
	are mostly plants	bases is the code for a	 understand why the
	and algae which	particular amino acid.	importance of
	transfer about 1%	The order of bases	Mendel's discovery
	of the incident	controls the order in	was not recognised
	energy from light	which amino acids are	until after his death
	for photosynthesis.	assembled to produce	
	Only approximately	a particular protein.	In the early 20th
	10% of the biomass	The long strands of	century it was
	from each trophic	DNA consist of	observed that
	level is transferred	alternating sugar and	chromosomes and
	to the level above	phosphate sections.	Mendel's 'units'
	it. Losses of	Attached to each sugar	behaved in similar
	biomass are due to:	is one of the four	ways. This led to the
	 not all the 	bases. The DNA	idea that the 'units',
	ingested material is	polymer is made up of	now called genes, were
	absorbed, some is	repeating nucleotide	located on
	egested as faeces •	units.	chromosomes. In the
	some absorbed		mid-20th century the
	material is lost as	(HT only) Students	structure of DNA was
	waste, such as	should be able to:	determined and the
	carbon dioxide and	• recall a simple	mechanism of gene
	water in respiration	description of protein	function worked out.
	and water and urea	synthesis	This scientific work by
	in urine. Large	• explain simply how	many scientists led to
	amounts of glucose	the structure of DNA	the gene theory being
	are used in	affects the protein	developed
	respiration	made	

	describe how
4.7.5.1 Factors	genetic variants may
affecting food	influence phenotype:
security	a) in coding DNA by
Biological factors	altering the activity of
which are	a protein: and b) in
threatening food	non-coding DNA by
security include: •	altering how genes are
the increasing birth	expressed.
rate has threatened	(HT only) In the
food security in	complementary
some countries •	strands a C is always
changing diets in	linked to a G on the
developed	opposite strand and a
countries means	T to an A.
scarce food	(HT only) Students are
resources are	not expected to know
transported around	or understand the
the world • new	structure of mRNA.
pests and	tRNA. or the detailed
pathogens that	structure of amino
affect farming	acids or proteins.
environmental	(HT only) Students
changes that affect	should be able to
food production,	explain how a change
such as widespread	in DNA structure may
famine occurring in	result in a change in
some countries if	the protein
rains fail	synthesised by a gene.
• the cost of	(HT only) Proteins are
agricultural inputs	synthesised on
 conflicts that have 	ribosomes, according
arisen in some parts	to a template. Carrier
of the world which	molecules bring
affect the	specific amino acids to
availability of water	add to the growing
or food. Sustainable	protein chain in the
methods must be	correct order.
found to feed all	(HT only) When the
people on Earth.	protein chain is

			complete it folds up to	
		4.7.5.2 Farming	form a unique shape.	
		techniques	This unique shape	
		the efficiency of	enables the proteins to	
		food production can	do their job as	1
		be improved by	enzymes, hormones or	1
		restricting energy	forming structures in	1
		transfer from food	the body such as	1
		animals to the	collagen.	
		environment. This	(HT only) Mutations	
		can be done by	occur continuously.	1
		limiting their	Most do not alter the	1
		movement and by	protein, or only alter it	1
		controlling the	slightly so that its	
		temperature of	appearance or function	
		their surroundings.	is not changed.	1
		Some animals are	(HT only) A few	1
		fed high protein	mutations code for an	1
		foods to increase	altered protein with a	
		growth.	different shape. An	
			enzyme may no longer	1
		4.7.5.3 Sustainable	fit the substrate	1
		fisheries	binding site or a	
		Fish stocks in the	structural protein may	
		oceans are	lose its strength.	
		declining. It is	(HT only) Not all parts	1
		important to	of DNA code for	1
		maintain fish stocks	proteins. Non-coding	
		at a level where	parts of DNA can	1
		breeding continues	switch genes on and	1
		or certain species	off, so variations in	
		may disappear	these areas of DNA	1
		altogether in some	may affect how genes	
		areas. Control of	are expressed.	
		net size and the		
		introduction of		
		fishing quotas play		
		important roles in		
		conservation of fish		

stocks at a
sustainable level
Sustallable level.
4.7.5.4. KOIE OT
biotechnology
Modern
biotechnology
techniques enable
large quantities of
microorganisms to
be cultured for
food. The fungus
Fusarium is useful
for producing
mycoprotein, a
protein-rich food
suitable for
vegetarians. The
fungus is grown on
glucose syrup, in
aerobic conditions.
and the biomass is
harvested and
nurified A
genetically modified
hacterium produces
human insulin
When harvested
and purified this is
and purmed this is
diskster CM man
could provide more
tood or food with
an improved
nutritional value
such as golden rice

Examples of Key Disciplinary Knowledge (methods/framework to establish knowledge)	Measure the population size of a common species in a habitat. Use sampling techniques Investigate the effect of competition on plants. one tray of spaced out seeds and one with crowded seeds. Application of surface area to volume ratio to adaptation in plants and animals	(biology only) Investigate the effect of temperature on the rate of decay of fresh milk by measuring pH change Interpretation and production of food webs/chains	Students be able to interpret data on greenhouse production linked to climate change. Be able to interpret and produce pyramids of biomass Calculate the bio- accumulation of a toxic substance in an ecosystem	Interpret and make Punnett square diagrams to predict the percentage chance of inherited disorders being passed and sex determination.	Interpret information about genetic engineering techniques and to make informed judgements about issues concerning cloning and genetic engineering, including GM crops Explain the potential benefits and risks of cloning in agriculture and in medicine and that some people have ethical objections.	Students should be able to extract and interpret information from charts, graphs and tables such as evolutionary trees Interpret evolutionary trees
Required Practical (use spec towards back for list and add overview here then fill RP table I have made after Y11 table-scroll down to see)	Biology RP 9 Population and distribution Measure the population size of a common species in a habitat. Use sampling techniques to investigate the effect of a factor on the distribution of this species	Biology RP 10 Biology only Decay (biology only) Investigate the effect of temperature on the rate of decay of fresh milk by measuring pH change				

Examples of Reading Opportunity	Complete land	Dete increat	Tabuing to a fact	Commente		Decistoria
Examples of Key Tier 2 Vocabulary	Sample, level	Rate, impact	Technique, transfer	Sequenece, advantage, disadvantage	Identical, select	Resist, class
Examples of Key Tier 3 Vocabulary	Communities, stable, abiotic, biotic, quadrats, transect, competition, adaptation, extremophiles, camouflage	Biomass, producers, primary/secondary consumers, predators, prey, decay, water cycle, carbon cycle, photosynthesis, respiration, combustion, decomposition,	Biodiversity, waste, water/land/air pollution, acid rain, smog, deforestation, peat bog, greenhouse effect, climate change, global warming, breeding programmes, trophic levels, pyramid of biomass, sustainability	Asexual, sexual reproduction, meiosis, variation, fertilisation, natural selection, DNA, genome, bases, nucleotide, mutation, alleles, homozygote, heterozygote, genotype, phenotype, dominant, recessive, punnet square, sex chromosomes, polydactyly, cystic fibrosis, carriers, genetic engineering,	Variation, environmental, inherited, natural selection, mutation, evolution, selective breeding, genetic engineering, GMO, cloning,	Evolution, Darwin, speciation, fossils, extinction, antibiotic resistance, classification, kingdoms, , evolutionary trees
Examples of Numeracy	Mean calculations, Estimates of organisms in area	Prey/predators numbers comparison.	Graph interpretation		Graphs for continuous and discontinuous, categoric variation	

Disciplinary Knowledge via KS4 Required Practicals

Discipline	Year	Unit	Overview	Apparatus and techniques	Working Scientifically	Maths Skills
Biology RP1	Year 9	Cells and	Use a light	AT 1- Use of appropriate		MS 1d, 3a – use estimations
		organisation	microscope to	apparatus to make and record		to judge the relative size or
			observe, draw	a range of measurements		area of sub-cellular
		microscopes	and label a	accurately, including length,		structures.
			selection of plant	area, mass, time,		
			and animal cells.	temperature, volume of		
			A scale	liquids and gases, and pH		
			magnification	AT 7- Use of appropriate		
			must be included	apparatus, techniques and		
				magnification, including		
				microscopes, to make		
				observations of biological		
				specimens and produce		
				labelled scientific drawings		
Biology RP2	Year 9	Cells and	Investigate the	AT 1 – use appropriate	WS 2.1 – use the theory of	MS 1a. 1c – use simple
8,		organisation	effect of a range	apparatus to record mass and	osmosis to create hypotheses	compound measures of rate
			of concentrations	time.	on plant tissue. WS 2.2 – plan	of water uptake.
		osmosis	of salt or sugar	AT 3 – use appropriate	experiments to test	MS 1c – use percentages and
			solutions on the	apparatus and techniques to	hypotheses. WS 2.4 – have	calculate percentage gain and
			mass of plant	observe and measure the	due regard for accuracy of	loss of mass of plant tissue.
			tissue	process of osmosis.	measurements and health	MS 2b – find mean mass of
				AT 5 – measure the rate of	and safety. WS 2.6 – make	plant tissue.
				osmosis by water uptake	and record observations and	MS 4a, 4b, 4c, 4d – plot, draw
					measurements of mass.	and interpret appropriate
					WS 2.7 – evaluate the method	graphs.
					and suggest possible	
					improvements and further	
					Investigations. WS 3.1 –	
					present observations and	
					other data in graphical form.	

					WS 3.2 – translate mass data	
					into graphical form.	
Biology RP3	Year 9	Cells and	Use qualitative	AT 2 – safe use of a Bunsen	WS 2.4 – carry out	
		organisation	reagents to test	burner and a boiling water	experiments appropriately	
			for a range of	bath.	having due regard for the	
		Food tests	carbohydrates,	AT 8 – use of qualitative	correct manipulation of	
			lipids and	reagents to identify biological	apparatus, and health and	
			proteins. To	molecules.	safety considerations	
			include:			
			Benedict's test			
			for sugars; iodine			
			test for starch;			
			Biuret reagent for			
			protein			
Biology RP 4	Year 9	Cells and	Investigate the	AT 1 – use appropriate	WS 2.1 – use scientific	MS 1a, 1c – carry out rate
		organisation	effect of pH on	apparatus to record the	theories and explanations and	calculations for chemical
			the rate of	volumes of liquids, time and	hypothesis on how pH affects	reactions
		Enzymes	reaction of	pH.	amylase activity.	
			amylase enzyme.	AT 2 – safe use of a water	WS 2.4 – carry out	
			Students should	bath or electric heater. AT 5 –	experiments appropriately	
			use a continuous	measure the rate of reaction	having due regard for the	
			sampling	by the colour change of	correct manipulation of	
			technique to	iodine indicator.	apparatus, the accuracy of	
			determine the	AT 8 – use of qualitative	measurements, and health	
			time taken to	iodine reagent to identify	and safety.	
			completely digest	starch by continuous	WS 2.5 – describe the	
			a starch solution	sampling	appropriate sampling	
			at a range of pH		technique to ensure samples	
			values. Iodine		are representative.	
			reagent is to be		WS 2.6 – make and record	
			used to test for		observations and	
			starch every 30		measurements of time.	
			seconds.		WS 3.1 – present a graph of	
			Temperature		amylase activity against pH.	
			must be		WS 3.2 – translate numeric	
			controlled by use		data into graphical form	

			of a water bath or electric heater			
Biology RP5	Year 10	microbes	(biology only) investigate the effect of antiseptics or antibiotics on bacterial growth using agar plates and measuring zones of inhibition	AT 1 – use appropriate apparatus to record length and area. AT 3 – use appropriate apparatus and techniques to observe and measure the process of bacterial growth. AT 4 – safe and ethical use of bacteria to measure physiological function and response to antibiotics and antiseptics in the environment. AT 8 – the use of appropriate techniques and qualitative reagents in problem-solving contexts to find the best antibiotic to use or the best concentration of antiseptic to use	WS 2.1 – develop hypotheses about the effectiveness of the antibiotics or antiseptics to be used. WS 2.2 – plan experiments to make observations, test hypotheses and explore phenomena. WS 2.4 – have due regard for accuracy of measurements, and health and safety when using bacterial cultures.	MS 5c – calculate cross- sectional areas of bacterial cultures and clear agar jelly using πr2 .
Biology RP 6	Yr10	photosynthesis	Investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed	AT 1 – use appropriate apparatus to record the rate of production of oxygen gas produced; and to measure and control the temperature of water in a large beaker that acts as a 'heat shield'. AT 2 – use a thermometer to measure and control temperature of water bath. AT 3 – use appropriate apparatus and techniques to observe and measure the	WS 2.1 – use scientific theories and explanations to develop hypotheses on how light intensity affects the rate of photosynthesis. WS 2.2 – plan experiments to test hypotheses. WS 2.5 – recognise that multiple samples will be needed at each light intensity. WS 2.6 – make and record observations of gas production.	MS 1a, 1c – measure and understand the rate of photosynthesis reactions. MS 4a, 4c – plot and draw appropriate graphs of rate of photosynthesis against light intensity selecting appropriate scale for axes. MS 3a, 3d (HT) – understand and use inverse proportion: the inverse square law and light intensity in the context of photosynthesis.

				process of oxygen gas	WS 3 1 - present a graph of	
				production	light intensity against rate of	
				$\Delta T A = safe and ethical use$	nght intensity against rate of	
				and disposal of living	W(S 2 2 translate numeric	
					ws s.z – translate numeric	
				pondweed to measure	data into graphical form.	
				physiological functions and		
				responses to light.		
				AT 5 – measuring rate of		
				reaction by oxygen gas		
				production.		
Biology RP7	Year	Measuring	Plan and carry	AT 1 – use appropriate		MS 4a – translate information
	11	Reaction time	out an	apparatus to record time.		between numerical and
			investigation into	AT 3 – selecting appropriate		graphical forms
			the effect of a	apparatus and techniques to		
			factor on human	measure the process of		
			reaction time.	reaction time.		
				AT 4 – safe and ethical use of		
				humans to measure		
				physiological function of		
				reaction time and responses		
				to a chosen factor		
Biology RP 8	Year	Germination	(biology only))	AT 1 – use appropriate	WS 2.2 – plan experiments to	
	11		Investigate the	apparatus to record length	make observations to explore	
			effect of light or	and time	the phenomena of plant	
			gravity on the	$\Delta T = selecting appropriate$	responses	
			growth of	apparatus and techniques to	WS 2.3 - apply knowledge of	
			germinating	measure the growth of shoots	a range of techniques	
			soods Pocord	or roots	analige of techniques,	
			seeus. Necoru	AT 4 safe and athical use of	apparatus and materials	
			results as both	AT 4 – sale and ethical use of	appropriate to the	
			length	plants to measure	experiment.	
			measurements	physiological function of	vvs 2.6 – make and record	
			and as careful,	growth in response to light or	observations and	
			labelled biological	gravity.	measurements using length	
			drawings to show	AT 7 – observations of	and biological drawings.	
			the effects	biological specimens to		

				produce labelled scientific	WS 2.7 – suggest	
				drawings	improvements and further	
				C	investigations.	
					WS 3.1 – present	
					observations as tables, graphs	
					or drawings.	
Biology RP9	Year 11	Population distribution	Measure the population size of	AT 1 – use appropriate apparatus to record length	WS 2.1 – develop hypotheses regarding distribution of a	MS 1d, 3a – estimates of population size based on
			a common	and area.	species as a consequence of a	sampling.
			species in a	AT 3 – use transect lines and	factor.	MS 2b – calculate arithmetic
			habitat. Use	guadrats to measure	WS 2.2 – plan experiments to	means.
			sampling	distribution of a species.	test hypotheses on	MS 2d – understand
			techniques to	AT 4 - safe and ethical use of	distribution.	principles of sampling.
			investigate the	organisms and response to a	WS 2.3 – apply a range of	MS 2f – understand the terms
			effect of a factor	factor in the environment.	techniques, including the use	mean, mode and median as
			on the	AT 6 - application of	of transects and quadrats	applied to ecological data
			distribution of	appropriate sampling	and the measurement of an	MS 4c - plot and draw
			this species	techniques to investigate the	abiotic factor	appropriate graphs selecting
			this species	distribution and abundance of		appropriate scales for the
				organisms in an ecosystem via		
				direct use in the field		axes
				AT 9 use of appropriate		
				tochniques in more complex		
				techniques in more complex		
				contexts including continuous		
				sampling in an investigation.		
BIOlOgy RP 10	Year	decay	(biology only)	AT 1 – use appropriate	WS 2.1 – Use scientific	MIS 1c – calculate rate
			Investigate the	apparatus to record	theories to make a hypothesis	changes in the decay of
			effect of	temperature and pH.	about the effect of	biological material.
			temperature on	AT 3 – the use of appropriate	temperature on rate of decay.	MS 4a – translate information
			the rate of decay	apparatus to measure	WS 2.4 – carry out	between numerical and
			of fresh milk by	anaerobic decay.	experiments with due regard	graphical form.
			measuring pH	AT 4 – safe use of	for the correct manipulation	MS 4c – plot and draw
			change	microorganisms.	of apparatus, the accuracy of	appropriate graphs selecting
				AT 5 – measurement of rate	measurements and health	appropriate scales for the
				of decay by pH change.	and safety considerations.	axes.

					WS 2.6 – make and record observations and measurements. WS 2.7 – evaluate method and identify possible improvements.	
Chemistry RP1	Year 10	Chemical Changes	Preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water bath or electric heater to evaporate the solution.	AT 2 – safe use of appropriate heating devices and techniques including use of a Bunsen burner and a water bath or electric heater. AT 3 – use of appropriate apparatus and techniques for conducting chemical reactions, including appropriate reagents. AT 4 – safe use of a range of equipment to purify and/or separate chemical mixtures including evaporation, filtration, crystallisation. AT 6 – safe use and careful handling of liquids and solids, including careful mixing of reagents under controlled conditions.	WS 2.3 – apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations.	
Chemistry RP2	Year 10	Chemical Changes	(Chemistry only) Determination of the reacting volumes of solutions of a strong acid and a strong alkali by titration. (HT only)	AT 1 – use of appropriate apparatus to make and record a range of measurements accurately, including volume of liquids. AT 8 – the determination of concentrations of strong acids and strong alkalis.	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and	MS 1a – recognise and use expressions in decimal form. MS 1c – use ratios, fractions, and percentages. MS 2a – use an appropriate number of significant figures.

			determination of the concentration of one of the solutions in mol/dm3 and g/dm3 from the reacting volumes and the known concentration of the other solution.		measurements using a range of apparatus and methods.	
Chemistry RP3	Year 10	Chemical Changes	Investigate what happens when aqueous solutions are electrolysed using inert electrodes. This should be an investigation involving developing a hypothesis.	AT 3 – use of appropriate apparatus and techniques for conducting and monitoring chemical reactions. AT 7 – use of appropriate apparatus and techniques to draw, set up and use electrochemical cells for separation and production of elements and compounds. AT 8 – use of appropriate qualitative reagents and techniques to analyse and identify unknown samples or products including gas tests for hydrogen, oxygen and chlorine.	WS 2.1– use scientific theories and explanations to develop hypotheses. WS 2.2 – plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. WS 2.3 – apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and	

· · · · · · · · · · · · · · · · · · ·						
					measurements using a range of apparatus and methods.	
Chemistry RP4	Year 10	Energy Changes	Investigate the variables that affect temperature changes in reacting solutions such as, eg acid plus metals, acid plus carbonates, neutralisations, displacement of metals.	AT 1 – use of appropriate apparatus to make and record a range of measurements accurately, including mass, temperature, and volume of liquids. AT 3 – use of appropriate apparatus and techniques for conducting and monitoring chemical reactions. AT 5 – making and recording of appropriate observations during chemical reactions including changes in temperature. AT 6 – safe use and careful handling of gases, liquids and solids, including careful mixing of reagents under controlled conditions, using appropriate apparatus to explore chemical changes.	WS 2.1 – use scientific theories and explanations to develop hypotheses. WS 2.2 – plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. WS 2.3 – apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods. WS 2.7 – evaluate methods and suggest possible improvements and further investigations.	MS 1a – recognise and use expressions in decimal form. MS 2a – use an appropriate number of significant figures. MS 2b – find arithmetic means. MS 4a – translate information between graphical and numeric form. MS 4c – plot two variables from experimental or other data.
Chemistry RP5	Year 10	The Rate and Extent of Chemical Change	Investigate how changes in concentration	AT 1 – use of appropriate apparatus to make and record a range of measurements	WS 2.1 – use scientific theories and explanations to develop hypotheses. WS 2.2 –	MS 1a – recognise and use expressions in decimal form.

			affect the rates of reactions by a method involving measuring the volume of a gas produced and a method involving a change in colour or turbidity. This should be an investigation involving developing a hypothesis	accurately, including mass, time, temperature, and volume of liquids and gases. AT 3 – use of appropriate apparatus and techniques for conducting and monitoring chemical reactions. AT 5 – making and recording of appropriate observations during chemical reactions including the measurement of rates of reaction by a variety of methods such as production of gas and colour change. AT 6 – safe use and careful handling of gases, liquids and solids, including careful mixing of reagents under controlled conditions, using appropriate apparatus to explore chemical changes	plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. WS 2.3 – apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. WS 2.6 – make and record observations and measurements using a range of apparatus and methods. WS 2.7 – evaluate methods and suggest possible improvements and further investigations.	MS 1c – use ratios, fractions and percentages. MS 1d – make estimates of the results of simple calculations. MS 2a – use an appropriate number of significant figures. MS 2b – find arithmetic means. MS 4a – translate information between graphical and numeric form. MS 4b – understand that y = mx + c represents a linear relationship. MS 4c – plot two variables from experimental or other data. MS 4d – determine the slope and intercept of a linear graph. MS 4e – draw and use the slope of a tangent to a curve as a measure of rate of change.
Chemistry RP6	Year 11	Chemical Analysis	Investigate how paper chromatography can be used to separate and tell the difference between coloured	AT 1 – use of appropriate apparatus to make and record a range of measurements accurately. AT 4 – safe use of a range of equipment to purify and/or separate chemical mixtures including chromatography.	WS 2.4 – carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations.	

			substances.		WS 2.6 – make and record	
			Students should		observations and	
			calculate Rf		measurements using a range	
			values.		of apparatus and methods.	
Chemistry RP7	Year	Chemical Analysis	Use of chemical	AT 2 – safe use of a Bunsen	WS 2.4 – carry out	
,	11	, ,	tests to identify	burner.	experiments appropriately	
			the ions in	AT 8 – use of appropriate	having due regard for the	
			unknown single	qualitative reagents and	correct manipulation of	
			ionic compounds	techniques to analyse and	apparatus, the accuracy of	
			covering the ions	identify unknown samples or	measurements and health	
			from sections	products including gas tests.	and safety considerations.	
			Flame tests	flame tests, precipitation	WS 2.6 – make and record	
			through to	reactions.	observations and	
			Sulfates.		measurements using a range	
					of apparatus and methods.	
Chemistry RP8	Year	Using Chemistry	Analysis and	AT 2 – safe use of appropriate	WS 2.3 – apply a knowledge	
,	11		, purification of	heating devices and	of a range of techniques,	
			water samples	techniques including use of a	instruments, apparatus, and	
			from different	Bunsen burner and a water	materials to select those	
			sources, including	bath or electric heater.	appropriate to the	
			pH, dissolved	AT 3 – use of appropriate	experiment.	
			solids and	apparatus and techniques for	WS 2.4 – carry out	
			distillation.	the measurement of pH in	experiments appropriately	
				different situations.	having due regard for the	
				AT 4 – safe use of a range of	correct manipulation of	
				equipment to purify and/or	apparatus, the accuracy of	
				separate chemical mixtures	measurements and health	
				including evaporation,	and safety considerations.	
				distillation.	WS 2.5 – recognise when to	
					apply a knowledge of	
					sampling techniques to	
					ensure any samples collected	
					are representative.	
					WS 2.6 – make and record	
					observations and	

					measurements using a range of apparatus and methods. WS 2.7 – evaluate methods and suggest possible improvements and further investigations.	
Physics RP1	9	Specific heat capacity	An investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.	AT 1 use of appropriate apparatus to measure mass, time and temperature accurately AT 5 use in a safe manner appropriate apparatus to measure energy changes/transfers and associated values such as work done	WS 2.1 – use the theory of specific heat capacity to create hypotheses on investigating specific heat capacity WS 2.2 – plan experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of mass, potential difference, current and temperature.	MS 2a – use an appropriate number of significant figures. MS 2b – find arithmetic means. MS 3b – change the subject of an equation. MS 3c – substitute numerical values into algebraic equations using appropriate units for physical quantities.
Physics RP2 (separates only)	9	Thermal insulation	Investigate the effectiveness of different materials as thermal insulators and the factors that may affect the thermal insulation properties of a material.	AT 1 use of appropriate apparatus to make and record a range of measurements accurately, including time, volume and temperature AT 5 safe use of appropriate apparatus in a range of contexts to measure energy changes/transfers and associate values such as work done	WS 2.1 – use the theory of refraction to create hypotheses on the behaviour of light. WS 2.2 – plan experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of angles of incidence and reflection/refraction.	MS 2a – use an appropriate number of significant figures. MS 2c – construct and interpret frequency tables and diagrams, bar charts and histograms. MS 4c – plot two variables from experimental or other data. MS 5c – calculate areas of triangles and rectangles, surface areas and volumes of cubes

Physics RP 310ResistanceUse dircuit diagrams to set appropriate appropriate accurately including length oricuits to an electrical circuit toilAT 1 use of appropriate aparatus to make and record arange of measurements accurately including length on resistance. WS 2.2 - plan on resistance. WS 2.2 - plan on resistance. WS 2.2 - plan on resistance. WS 2.2 - plan measurements to test the resistance of should include - the length of a emperature + combinations of a paratus to measure entre estions of and parallel. I-V characteristics Use dircuit to investigate the investigate the investigate the to explore the characteristics and parallel. I-V characteristics of construct and parallel. I-V characteristics of a variety of circuit elementsAT 1 use appropriate and safety. WS 2.1 - use the theory of potential difference and current. WS 3.2 - make and safety. WS 2.6 - make and safety. WS 2.6 - make and parallel. I-V characteristics Use circuit diagrams to construct and check series and parallel. I-V characteristics Use circuit diagrams to construct a paropriate arreistor of a variety of common circuit elementsWS 2.1 - use the theory of measurements of potential difference-current graphs of length of wire at constant temperature.MS 2a - use an appropriate appropriate appropriate and parallel. I-V characteristics of a variety of dircuit elementsMS 21 - use the theory of measurements of potential difference-current graphs of length of weal resistor appropriate arreits to ranke and record arreits to ranke and record a resistor and a dide at constant temperature.MS 21 - use the theory of potential difference originate measurements of							
apparatus to appropriate appro	Physics RP 3	10	Resistance	Use circuit diagrams to set up and check appropriate circuits to investigate the factors that affect the resistance of an electrical circuit. This should include • the length of a wire at constant temperature • combinations of resistors in series and parallel. I-V characteristics Use circuit diagrams to construct appropriate circuits to investigate the I-V characteristics of a variety of circuit elements including a filament lamp, a resistor and a diode at constant temperature.	AT 1 use of appropriate apparatus to make and record a range of measurements accurately including length AT 6 use of appropriate apparatus to measure current, potential difference (voltage) and resistance and to explore the characteristics of a variety of circuit elements AT 7 use circuit diagrams to construct and check series and parallel circuits including a variety of common circuit elements	WS 2.1 – use the theory of potential difference and current to create hypotheses on resistance. WS 2.2 – plan experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of potential difference and current. WS 3.1 – present graphs of length of wire and resistance as well as potential difference-current graphs for the bulb, diode and resistor agai WS 3.2 – translate numeric data into graphical form	MS 2a – use an appropriate number of significant figures. MS 2b – find arithmetic means. MS 4b – understand that y = mx + c represents a linear relationship. MS 4c – plot two variables from experimental or other data. MS 4d – determine the slope and intercept of a linear graph
	T TIYSIUS INF 4	10		apparatus to	apparatus to make and record	particles to create hypotheses	number of significant figures.
			make and record the measurements needed to determine the densities of regular and irregular solid objects and liquids. Volume should be determined from the dimensions of regularly shaped objects and by a displacement technique for irregularly shaped objects.	a range of measurements accurately including length, mass and volume. Use of such measurements to determine densities of solid and liquid objects	on density. WS 2.2 – plan experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of mass and volume.	MS 2b – find arithmetic means MS 5c – calculate areas of triangles and rectangles, surface areas and volumes of cubes	
------	----	------------------------	--	--	--	---	
RP 5	10	Force and extension	Investigate the relationship between force and extension of a spring.	AT 1 use appropriate apparatus to make and record a range of measurements accurately including length AT 2 use appropriate apparatus to measure and observe the effect of forces including the extension of springs	WS 2.1 – use the theory of Hooke's Law to create hypotheses on the extension of a spring. WS 2.2 – plan experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of weight and spring length WS 3.1 – present a graph of force against extension WS 3.2 – translate numeric data into graphical form	MS 2a – use an appropriate number of significant figures. MS 2b – find arithmetic means. MS 4a – translate information between graphical and numeric form. MS 4b – understand that y = mx + c represents a linear relationship. MS 4c – plot two variables from experimental or other data.	

RP 6	10	Acceleration	Investigate • the	AT 1 use appropriate	WS 2.1 – use the theory of	MS 2a – use an appropriate
			effect of varying	apparatus to make and record	forces to create hypotheses	number of significant figures.
			the force on the	a range of measurements	on acceleration. WS 2.2 – plan	MS 2b – find arithmetic
			acceleration of an	accurately including length,	experiments to test	means. MS 2g – use a scatter
			object of constant	mass and time AT 2 use	hypotheses. WS 2.4 – have	diagram to identify a
			mass • the effect	appropriate apparatus to	due regard for accuracy of	correlation between two
			of varying the	measure and observe the	measurements and health	variables. MS 4a – translate
			mass of an object	effect of forces AT 3 use	and safety. WS 2.6 – make	information between
			on the	appropriate apparatus and	and record observations and	graphical and numeric form.
			acceleration	techniques to measure	measurements of force, mass	MS 4b – understand that y =
			produced by a	motion, including	and time.	mx + c represents a linear
			constant force.	determination of speed and	WS 3.1 – present a graph of	relationship. MS 4c – plot two
				rate of change of speed	force against acceleration	variables from experimental
				(acceleration/deceleration)	WS 3.2 – translate numeric	or other data.
					data into graphical form	
RP 7	11	Waves	Make	AT 4 make observations of	WS 2.1 – use the theory of	MS 2g – use a scatter diagram
			observations to	waves in fluids and solids to	energy transfer in waves to	to identify a correlation
			identify the	identify the suitability of	create hypotheses on waves.	between two variables. MS 4c
			suitability of	apparatus to measure speed,	WS 2.2 – plan experiments to	 plot two variables from
			apparatus to	frequency and wavelength	test hypotheses. WS 2.4 –	experimental or other data.
			measure the		have due regard for accuracy	MS 5a – use angular measures
			frequency,		of measurements and health	in degrees. MS 5b – visualise
			wavelength and		and safety. WS 2.6 – make	and represent 2D and 3D
			speed of waves •		and record observations and	forms including two
			in a ripple tank •		measurements of time and	dimensional representations
			in a solid.		length.	of 3D objects.
						-
					WS 3.1 – present a graph of	
					amylase activity against pH.	
					WS 3.2 – translate numeric	
					data into graphical form	
RP 8	11	Radiation and	Investigate how	AT 1 use appropriate	WS 2.1 – use the theory of	MS 2c – construct and
		absorption	the amount of	apparatus to make and record	infrared waves to create	interpret frequency tables
			infrared radiation	a range of measurements	hypotheses on radiation and	and diagrams, bar charts and
			absorbed or	accurately including	absorption. WS 2.2 – plan	histograms

radiated by a surface depends on the nature of that surface.	temperature AT 4 make observations of the effects of the interaction of electromagnetic waves with matter	experiments to test hypotheses. WS 2.4 – have due regard for accuracy of measurements and health and safety. WS 2.6 – make and record observations and measurements of temperature and time WS 3.1 – present a graph of colour of tube against temperature change. WS 3.2 – translate numeric data into graphical form	
---	---	--	--