Calculation Progression - Addition

Early Years

Key Vocabulary: add, more, sum, make, total, How much more is...? one more, altogether
Counting fluency: To count forwards and backwards in steps of $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

Objective \& Strategy	Concrete	Pictorial	Abstract
To find one more than a given number up to 20 .	Use physical objects to add one object to find the whole. One more than 6 is 7 Modelled using counters for the Part Whole Method.	Use pictorial representations to add one object to find the whole. One more than $\mathbf{6}$ is $\mathbf{7}$ Modelled using Part- Whole with numbers recorded.	Record as a written calculation. $\begin{aligned} & 6+1=7 \\ & 1+6=7 \\ & 7=6+1 \\ & 7=1+6 \end{aligned}$
To use objects to add two single-digit numbers.	Use physical objects to add two single objects to find the whole. $5+3=8$ Modelled using counters for the Part Whole Method.	Use pictorial representations to add two single digits to find thewhole. Modelled using the Part Whole Method with numbers Modelled using a Number Line $5+3=8$	Record as a written calculation. $\begin{aligned} & 5+3=8 \\ & 3+5=8 \end{aligned}$ $\begin{aligned} & 8=5+3 \\ & 8=3+5 \end{aligned}$

Calculation Progression - Addition

Year 1

Key Vocabulary: addition, add, more, and, makes, sum, total, altogether, count on, one more, two more...ten more...., how many more to make? How many more is...than...?How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 s, 5 s$ and $10 s$.

Objective \& Strategy	Concrete	Pictorial	Abstract
To find one more than a given number up to 100 .	Use physical objects to find one or ten more than a givennumber. $\mathbf{1}$ more than $\mathbf{2 5}$ is $\mathbf{2 6}$ Modelled Using Base 10	Use pictorial representations to add. 1 more than 25 is 26 Modelled using the Part-Whole method with Base 10 then numbers	Record as a written calculation $\begin{aligned} & 24+1=25 \\ & 1+24=25 \\ & 25=24+1 \\ & 25=1+24 \end{aligned}$
To find 10 more than a given number up to 100 .	10 more than $\mathbf{2 5}$ is $\mathbf{3 5}$ Modelled using Base 10	$\mathbf{1 0}$ more than $\mathbf{2 5}$ is $\mathbf{3 5}$ Modelled using the Part-Whole method with Base 10 then numbers	Record as a written calculation $\begin{aligned} & 25+10=35 \\ & 10+25=35 \\ & 35=25+10 \\ & 35=10+25 \end{aligned}$
To represent \& use number bonds and related subtraction factswithin 20.	Use physical objects to find related number facts.Number beads 2 more than 5 5+2=7	Use pictorial representations to show related number facts 2 more than 5 5+2=7	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

Calculation Progression - Addition

To solve one step problems that include addition.	Use physical objects to solve one step problems.Modelled using Part Whole with Base 10 $7=?+4$	Use pictorial representations to solve one step problems. Modelled using Part-Whole with numbers 7 = ? + 4 Modelled using the Bar Model. Children would then go on to solve it usingtheir knowledge of addition.	Record as a written calculation $7 \text { = }$ \qquad $+4$
To start at the bigger number and count on.	Use physical objects to count on from a number. $12+5=17$ Modelled using a bead string Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use pictorial representations, begin to count on from a given number.Modelled using a number line Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Record as a written calculation $\begin{aligned} & 12+5=17 \\ & 5+12=17 \end{aligned}$ Put the larger number in yourhead and count on the smallernumber to find your answer.
To regroup to make 10. This is an essential skillfor column addition in Year 2.	Use physical objects to regroup to make 10.	Use pictorial representations, begin to count on from a given number. Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 . $9+5=14$ (1) 4	Record as a written calculation. $7+4=11$ If I am at seven, how manymore do I need to make 10? How many more do I neednow to make it to 11?

Calculation Progression - Addition
To add near doubles.

Calculation Progression- Addition

Key Vocabulary: addition, add, more, and, makes, sum, total, altogether, double, count on, one more, two more...ten more...., one hundred more, how many more to make? How many more is...than...? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 s, 3 s, 4 s, 5 s$ and 10 s.
Mental strategies

Skill	Strategy
To add 9 to a 2-digit number by adjusting.	34+9 Make the number with base ten equipment, then add 10. You then need to subtract 1 because 10 is actually one more than 9 . Children will begin to do this mentallywithout equipment. For $34+9$ you would first add $1034+10=44$ then subtract 1 , $44-1=43 \text { so } 34+9=43 \text {. }$
To add near doubles	13+14 When numbers are very close in value, adjust one of numbers to make it the same then use knowledge of portioning to double then subtract 1 For $13+14=$ Make 13 into 14 by adding 1 , double 14 by doubling $10(20)$ and doubling 4 (8) and recombine (28). Then subtract the one that you added at the beginning ($28-7$) sp $13+14=27$.

Year 2 Calculation Methods

Objective	Concrete	Pictorial	Abstract
To recall and use addition facts to 20 fluently.	Use physical objects to represent each part of calculation. Then usethis to show related addition facts. Modelled using part whole method. Children explore ways of making number bonds by moving the concrete objects around. $20=7+13$	Use pictorial representatives to explore addition facts to 20. Children begin to showing their understanding by representing using numbers. Modelled using the part whole method with structured numbersentences to show relation facts. $\begin{gathered} \square+\square=20 \\ \square+\square=20 \\ \square+\square \\ \square=\square \end{gathered}$	Record as a written calculation $\begin{aligned} & ?+1=20 \\ & 1+?=20 \end{aligned}$ $\begin{aligned} & 20-1=? \\ & 20-?=1 \end{aligned}$
To derive and use related facts up to 100.	Use physical objects to show mathematical facts up to 100.	Use pictorial representations to show mathematical related facts. Children show their thinking using jottings to record their mathematical calculations. $3+3=6$ $\mathbf{3 0}+\mathbf{3 0}=\mathbf{6 0}$ $300+300=600$	Record as a written calculation $3+4=7$ leads to... $30+40=70$ leads to... 300 $+400=700$

Calculation Progression - Addition

Calculation Progression - Addition

Calculation Progression - Addition

Year 3

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, increased by, double, near double, one more, two more...ten more....,one hundred more, inverse, commutative law, how many more to make? How many more is...than...? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 8 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s from any given number.

Calculation Progression - Addition
Year 3 Calculation Methods

Objective	Concrete	Pictorial	Abstract
To add numbers up to3 digits, using formal written methods- no regrouping.	Use physical objects to add numbers up to 3 digits using a formal method. Modelled using Base 10 and place value counters- Add the ones first then the tens. $233+142=375$	Use pictorial representations e.g. jottings.	Written method (expanded form) $\begin{gathered} 233 \\ +142 \\ \hline 5(3+2) \\ \underline{70}(30+40) \\ 300(200+100) \end{gathered}$ Condensed columnar addition $\begin{array}{r} 233 \\ +142 \\ \hline 375 \\ \hline \end{array}$
To add numbers up to3 digits, using formal written methods, with regrouping.	Use physical objects to add numbers up to 3 digits. Modelled using Base 10 and place value counters-Add the ones together first then the tens. $37+25=62$ Modelled using Base 10 Children to understand that the highest amount in each column is 9so sometimes exchange into the next column is necessary. Children know to exchange ten 1s for a ten and ten 10 s for a hundred. $243+373=616$	Use pictorial representations to add numbers up to3 digits.	Continue to use the expanded method until secure in understanding. Condensed columnar addition Carry below the line when bridging. $\begin{array}{r} 37 \\ +25 \\ \hline \frac{62}{1} \end{array}$ $\begin{array}{r} 243 \\ +373 \\ \hline 616 \end{array}$

Calculation Progression - Addition

Calculation Progression - Addition

Year 4
Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more,two more...ten more...., inverse, commutative law, one hundred more, how many more to make? How many more is...than...? How much more is...?

Counting Fluency:To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting number.
Mental Strategies

Skill	Strategy	
*add a 4-digit number to ones including crossing boundaries.	$\begin{aligned} & 543 \underline{2}+\underline{6} \\ & 765 \underline{4}+\underline{8} \end{aligned}$	If the ones do not cross into the tens column then add the ones only $543 \underline{2}+\underline{6}=543 \underline{8}$ If the ones cross into the tens column then use knowledge of number bonds to solve. For $765 \underline{4}+8$ you would partition 8 into $\underline{6}$ and 2 then $7654+6=$ $7660+2=7662$.
*add a 4-digit number to tens including crossing boundaries.	$\begin{aligned} & 65 \underline{2} 7+\underline{30} 0 \\ & 42 \underline{5} 6+\underline{9} 0 \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $65 \underline{2} 7+\underline{3} 0=65 \underline{5} 7$. If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $42 \underline{5} 6+90$ you would partition 90 into $\underline{50}$ and 40 and then $4256+50=4306+40=4346$
*add a 4-digit number to hundreds including crossing boundaries.	$\begin{aligned} & 23378+\underline{400} \\ & 6527+\underline{7} 00 \end{aligned}$	If the hundreds do not cross into the thousands column then add the hundreds only $2 \underline{3} 78+\underline{4} 00=2 \underline{7} 78$. If the hundreds cross into the thousands column then use knowledge of number bonds to solve. For $6 \underline{527+700}$ you would partition 700 into 500 and 200 then $6527+500=7027+200=7227$.
*add a 4-digit number to thousands including crossing boundaries.	$\begin{aligned} & \underline{5} 267+\underline{3} 000 \\ & \underline{5} 267+\underline{7} 000 \end{aligned}$	If the thousands do not cross into the ten thousand column then add the thousands only $\underline{5} 267+\underline{3} 000=\underline{8} 267$. If the thousands cross into the ten thousand column then use knowledge of number bonds to solve. For $\underline{5} 267+7000$ you wouldpartition 7000 into $\underline{5000}$ and 2000 then $5267+5000=10,267+2000=12,267$.
*Add any pair of 3-digit multiples often including crossing boundaries.	$\begin{aligned} & 4 \underline{3} 0+5 \underline{2} 0 \\ & 6 \underline{5} 0+2 \underline{7} 0 \end{aligned}$	If the numbers do not cross into others columns then use partitioning to add $430+520=950$. If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $6 \underline{50} 0+270$ you partition 270 into 200 and 50 and $\underline{20}$. Then you would do $650+200=850$ then $850+\underline{50}=900$ to make the next multiple of 100 then add $20900+20-=920$.
*add near multiples of 10,100 or 1000then adjust.	$\begin{aligned} & 2335+\underline{59} \\ & 2345+\underline{199} \\ & 5423+\underline{2999} \end{aligned}$	Add the nearest multiple of $10(60)$ then subtract 1 because 60 is actually 1 more than $59.2335+60=2395-1=2394$. Add the nearest multiple of $100(200)$ then subtract 1 because 200 is actually 1 more than $199.2345+200=2545-1=2544$. Add the nearest multiple of $1000(3000)$ then subtract 1 because 3000 is actually 1 more than $2999.5423+3000=8423-1=8422$.
*add near doubles of 2 or 3-digit numbers.	38+37	If the numbers are near doubles, adjust so that they are the same number. Then use the portioning method for doubling and adjust. For $38+37$, double 38 then take away 1 to make 75 .
*Add to a decimal fraction with unitsand tenths to make the next whole number.	$0.4+0.6$	Use knowledge of number bonds to solve. For $0 . \underline{4}+?=1$, you would use your knowledge of $4+\underline{6}=10$ so you would know $0 . \underline{4}+0 . \underline{6}=1.0$.

Calculation Progression - Addition

Year 4 Calculation Methods

Calculation Progression - Addition

Year 5

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more,two more...ten more...., one hundred more, inverse, commutative lawhow many more to make? How many more is...than...? How much more is...?

Counting Fluency:To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting number.
Mental Strategies

Skill	Strategy	
* Add any pairs of 4-digit multiplesof 100.	$\begin{aligned} & 4 \underline{5} 00+3 \underline{2} 00 \\ & 5 \underline{4} 00+7 \underline{9} 00 \end{aligned}$	If the hundreds and thousands column do not cross into other columns then partition to add $4 \underline{5} 00+3 \underline{2} 00=7 \underline{7} 00$. If the hundreds and thousands column cross then use knowledge of number bonds to solve. For $5 \underline{400}+7 \underline{9} 00$ you add $5000+7000=12,000$ and $900+\underline{400}=\underline{13} 00$ and recombine $12,000+1300=13,300$.
*add near multiples of 10, 100, 1000, 10,000 then adjust, including crossing boundaries.	$\begin{aligned} & 2335+\underline{58} \\ & 2345+\underline{297} \\ & 5438+3995 \end{aligned}$	Add the nearest multiple of 10 (60) then subtract 2 because 60 is two more than 58 Add the nearest multiple of $100(300)$ then subtract 3 because 300 is three more than 297 Add the nearest multiple of $1000(4000)$ then subtract 5 because 4000 is five more than 3995 $\begin{gathered} 2335+60=2395-2=2393 \\ 2345+300=2645-3=2642 \\ 5438+4000=9438-5=9433 . \end{gathered}$
*Add tenths to a 1-digit whole number and tenths.	$\begin{aligned} & 4.3+0.4 \\ & 2 . \underline{4}+0.8 \end{aligned}$	If the tenths do not cross into ones column then add the tenths and ones separately $4 . \underline{3}+0.4=4.7$ If the tenths cross into the ones column then use your knowledge of number bonds to partition. For $2.4+0.8$, use your knowledge that $4+\underline{6}=10$ to partition the 0.8 into $0 . \underline{6}$ and 0.2 so $2 . \underline{4}+0 . \underline{6}=3+0.2=3.2$
*Add two 1-digit whole numbers and tenths.	$\begin{aligned} & 4.3+3.4 \\ & 6.7+1.5 \end{aligned}$	If the tenths do not cross into ones then add the tenths and ones separately e.g. 4.3+3.4=7.7 If the tenths cross into the ones column then use your knowledge of place value to solve. Make both numbers ten times bigger then calculate67+15=82. To adjust
*Add 2-digit numbers with tenthsand hundredths.	$\begin{aligned} & 0.46+0.21 \\ & 0.36+0.84 \end{aligned}$	If the tenths and hundredths do not cross into ones then use partitioning to solve e.g. $0.46+0.21=0.67$ If the tenths and/or hundredths cross into another column then use your knowledge of place value to solve. Make both numbers 100 timesbigger then calculate $36+84=120$. To adjust make your answer $\underline{100 \text { times smaller } 120 \div 10=1.2 \text { so } 0.36+0.84=1.20 ~}$
*Add to a decimal fraction with unitsand tenths to make the next whole number.	$4.4+$? $=5$	Use knowledge of number bonds to solve. For $4.4+?=5$, you would use your knowledge of $4+6=10$ so know $0 . \underline{4}+0 . \underline{6}=1.0$ so $4 . \underline{4}+0 . \underline{6}=5$.
*Add near doubles of decimals.	$3.8+3.7$	If numbers are near doubles adjust to make them the same number. Then use the portioning method for doubling and adjust. For $3.8+3.7$, double 3.8 by doubling 3 (6), doubling 0.8 (1.6) then combine to make 7.6 then take away 0.1 to make 7.5 .

Calculation Progression - Addition

Objective \& Strategy	Concrete	Pictorial	Abstract
To add numbers with more than 4 digits.	Modelled using place value counters Children to understand that the highest amount in eachcolumn is 9 so sometimes exchange into the next columnis necessary. Children understand that they can exchange ten 1 s for a ten, ten 10s for a hundred, ten 100s for a thousand, ten 1000s for a ten thousand. Children understand multi exchange where exchange isneeded in more than one column. $52,546+34,375=86,921$	Using different pictorial representations for the values, the childrenshow exchanges and understand the place value. This leads to greaterunderstanding when using the formal written method as the children know what the digit below the line represents.	Record as a written calculation Condensed columnar addition Carry below the line. Children to solve calculation involving multiple exchanges. 6584 $+5848$ 12432 111
To add numbers with up to two decimal places.	Use physical objects to add numbers with up to twodecimal places. Modelled using place value charts and counters $2.37+91.79=94.16$	Use pictorial representations to add numbers with up to two decimalplaces. Children will use jottings to help them represent the calculation. Theyadd each column starting first from the furthest column to the right and carry below the line when needed. $2.37+81.79=$ 84.16	Record as a written calculation Condensed columnar addition Children should line decimals up correctly, including examples when there are different number of decimal places.

Calculation Progression - Addition

Year 6

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more,two more...ten more...., one hundred more, inverse, commutative law, how many more to make? How many more is...than...? How much more is...?

Counting Fluency:To consolidate counting backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$ and $10,000 \mathrm{~s}$ from any starting number.
Mental Strategies

Skill	Strategy
Reconsolidate all strategies from Y 4 and 5.	
*Add a 4-digit multiple of 100 to a 4-digit number.	$6365+3400$ If the hundreds do not cross into the thousands column then add the hundreds only $6365+3400=9765$. $5432+1800$ If the hundreds cross into the thousands column then use knowledge of place value to partition. For $5432+1800$ you partition 1800 into 1000 and $\underline{600}$ and 200 . Then you would do $5432+1000=6432$ then $6 \underline{422}+\underline{600}=7032+200=7232$.
*Add large numbers.	$455,000+324,000$ If the hundreds and thousands do not cross into the thousands column then use partitioning to solve $455,000+324,000=879,000$ $543,000+387,000$ If the hundreds, thousands or ten thousands cross into another column then use knowledge of place value to partition. For $543,000+387,000$ you would do $500,000+300,000=800,000$ then $40,000+80,000=120,000$ and $3,000+7,000=10,000$ and recombine $800,000+120,000+10,000=930,000$
*add near multiples of $0.01,0.1,10,100,1000$ then adjust, including crossing boundaries.	$3.9+4.4$ Add the nearest whole number (4) then subtract 0.1 because 4 is actually 0.1 more than 3.9 so $4.4+\underline{4}=8.4-\underline{0.1}=8.3$ $2.56+\underline{4.98}$ Add the nearest whole number (5) then subtract 0.02 because 5 is actually 0.02 more than 4.98 so $2.56 \underline{+5}=7.56 \underline{-0.02}=7.54$
*Add several 1-digit whole numbers and tenth.	$3.4+2.8+3.5 \quad$ Use knowledge of place value and partitioning to solve. Make each decimal fractions 10 times bigger and do $34+28+35=97$ Then adjust to make your answer 10 times smaller $97 \div 10=9.7$ so $3.4+2.8+3.5=9.7$
*Add decimals with different numbers of places.	0.45 $+\mathbf{2 . 3} \quad$Add by partitioning using your knowledge of place value. First add the ones $0+2=2$, then the tenths $0.4+0.3=0.7$ then thehundredths $0.05+0=$ 0.05 and recombine $2+0.7+0.05=2.75$
*Add to any number with two decimal placesto make the next tenth or whole number.	$2.34+\boldsymbol{T}=\mathbf{2 . 4}$ Use knowledge of number bonds to 10. $3 \underline{4}+\underline{6}=40$ so $2.3 \underline{4}+0 . \underline{6}=2.4$ $6 . \underline{35}+\boldsymbol{T}=\mathbf{7}$ Use knowledge of number bonds to 100. $\underline{35}+\underline{65}=100$ so $6.35+0.65=7$
*Add to any number with three decimal places to make the next tenth or whole.	$4 . \underline{245}+\boldsymbol{+}=\mathbf{5}$ Use knowledge of place value to help $\underline{245}+\underline{755}=1000$ so $4.245+0.755=5$ $\mathbf{3 . 2 5 6}+?=\mathbf{3 . 3}$ Use knowledge of place value $\underline{256}+\underline{44}=300$ so $3.256+0.044=3.3$

Calculation Progression - Addition

Objective	Concrete	Pictorial	Abstract
To add several numbers of increasing complexity.	Modelled using Base 10 Children to understand that the highest amount in each column is 9 so sometimes exchange into the next column isnecessary. Children understand that they can exchange ten 1 s for a ten, ten 10 s for a hundred, ten 100s for a thousand, ten 1000s for a ten thousand. Children understand multi exchange where exchange isneeded in more than one column. $52,546+34,375=86,921$	Using different pictorial representations for the values, the children show exchanges and understand the place value. Thisleads to greater understanding when using the formal writtenmethod as the children know what the digit below the line represents.	Record as a written calculation Condensed columnar addition Children to solve calculation involving multiple exchanges and numbers with different numbers of digits. $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ \hline 120,579 \\ 1111 \end{array}+\begin{array}{r} 6584 \\ \hline 12432 \\ \hline 111 \end{array}$
To add numbers with increasing complexity, including adding money, measure.	Use physical objects to add numbers with increasingcomplexity, including adding money, measure Using counters and a place value chart $1.30+80.79=82.09$	Use pictorial representations to add numbers with increasing complexity, including adding money, measure Using jottings and place value chart. Children will use jottings to help them represent the calculation. They add each column starting first from the furthest column tothe right and carry below the line when needed. $2.37+81.79=84.16$	Children add several decimals with different numbers of decimal places by lining up digitsand inserting zeros as place holders. Insert zeros for place holders.

