Calculation Progression - Division

Early Years

Key Vocabulary: sharing, halving, number patterns

Objective \& Strategy	Concrete	Pictorial	Abstract
To begin to divide by sharing.	Children will use a range of resources to share concrete resourcesto begin to demonstrate understanding. Children will start with an even number and will need to share thisout equally in a given group. e.g. $10 \div 2=5$	Children will understand equal groups and share items out in playand problem solving. They will count in 2 s and 10 s and later in 5 s . Step 1: Count how many you have. Step 2:Share them equally so each group has the same amount. Step 3: Count how many are in each group.	Children will begin to experiment with writing divisionnumber sentences using the division symbol. $10 \div 2=5$

Calculation Progression - Division

Year 1
Key Vocabulary: division, dividing, grouping, sharing, doubling, halving, array, number pattern, equal grouping, equal sharing

Calculation Progression - Division

To divide by grouping.	Children will begin to solve division problems, which requiresorting objects and quantities into $2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Children will use concrete resources such as cubes, counters or objects to aid understanding. $10 \div 5=2$	Children will use number lines to show grouping. Children will also experiment dividing by grouping using the bar model. The children will be given a number or picture representatives. This willrepresent the whole. They then need to split the whole into the numberof groups they are dividing by and work out how many would be in each group. $\text { e.g. } 10 \div 5=2$	There are 10 flower bulbs. Plant 2 ineach pot. How many pots are there? $10 \div 2=5$ There are 10 flower bulbs. Plant 5 ineach pot. How many pots are there? $10 \div 5=2$

Calculation Progression - Division

Year 2
 three each ... ten each, equal groups of, multiplication table, multiplication fact.

 Strategy	Concrete	Pictorial	Abstract
To divide by sharing.	Children will use a range of concrete resources, includingcubes to share objects and quantities into equal groups. I have 12 cubes, can you share them equally into 3groups?	Children will use pictures and shapes to share quantities. Children will also be able to use the bar model to show andsupport their understanding. e.g. $12 \div 4=3$	Children will be writing division numbersentence using the divide symbol. $\begin{aligned} & 12 \div 3=4 \\ & 12 \div 4=3 \end{aligned}$
		0001000120001000	

Calculation Progression - Division

To divide by grouping(repeated addition)	Children will begin to solve division problems, which require sorting objects and quantities into $2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and10s. Children will use concrete resources such as cubes,counters or objects to aid understanding.	Children will use number lines to show grouping Children will dividing by grouping using the bar model. The children will be given a number or picture representatives. This will represent the whole. They then need to split the wholeinto the number of groups they are dividing by and work out howmany would be in each.	There are 12 flower bulbs. Plant 3 in each pot. How many pots are there? $12 \div 3=4$ There are 12 flower bulbs. Plant 4 in each pot. How many pots are there? $12 \div 4=3$
To use related multiplication and division facts usingthe inverse for the 2, 3, 5 and 10 timestable.	Children will use concrete resources, including cubes torepresent arrays. These will then form part of the learning process to explain number related facts and begin to write these in number form. $2 \times 4=8 \quad 4 \times 2=8 \quad 8 \div 2=4 \quad 8 \div 4=2$	Children will use pictorial representations to solve missingnumber facts that demonstrate related facts.	Children will show all 8 related number sentences to demonstrate related facts. $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$

Calculation Progression - Division

Year 3
 tens equal groups of, halving, array row, column, number patterns, division fact

Objective	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tablesup to 12×12.	Children continue to deepen their understanding of the linkbetween multiplication and division and use physical objectsto find related facts.	Children represent an array pictorially then findthe associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and divisionstatements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know whateach number represents in the calculation.
To using grouping to divide (repeated addition)	Children will use concrete resources, including place value counters to divide by grouping. $96 \div 8=12$ Step 1: Use place value counters to create the dividend. Step 2: Look at the divisor, this explains the number ofgroups you will need. E.g. 8. The children will need to exchange 1 ten for 10 ones. Step 3: Children will need to share out the remainingnumber so each group is equal.	Children will continue to use repeated additionon the number line but will work with increasingly large numbers. $96 \div 8=12$ Children will count on from in 8 s from 0 untilthey reach 96. Children will also continue to use the bar modelto support their understanding.	There are 96 footballs. Each player needs 8 footballs. How many players are there? $96 \div 8=12$ There are 96 footballs. Each player needs 12 footballs. How many players are there? $96 \div 12=8$ How many groups 8 are in 96 ? How many groups of 12 are in 96 ?

Calculation Progression - Division

To use arrays to divide.	Children will link division to multiplication by using arrays.They will begin writing numbers sentences to show what they can create. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$	Children will draw or be given a pictorial representation of an array. They will circle thearray to split it into groups to make multiplication and division sentences. $24 \div 6=4$ 4 equals 24	Children will find the inverse of multiplication and division sentences by creating linking number sentences. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$
To divide with whole numbers and represent remainders.	Children will use a range of concrete resources to dividebetween groups and see what is left over. $18 \div 4=4 r 2$	Children will use a number line to jump forward in equal jumps. They will then see how many morethey need to jump to find the remainder. $18 \div 4=4 r 2$	Children will complete written division number sentencesusing the division symbol and r to represent the remainder.

Calculation Progression - Division

Year 4
Key Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array.

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables upto 12×12.	Children continue to deepen their understanding of the link between multiplication and division and use physicalobjects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sortinginto equal groups.	Children apply their understanding of inverse relationships to write related multiplication anddivision statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and knowwhat each number represents in the calculation.
To recognise and use factor pairs and commutativity in mental calculations.	Children use physical objects to create arrays to supporttheir understanding of factors. Factors of 24	Children investigate finding all factors of a number bydrawing arrays. Factors of 24	Children use their knowledge of multiplication and division facts to find factors of numbers. Factors of 24 $\begin{aligned} & 1 \times 24=24 \\ & 2 \times 12=24 \\ & 3 \times 8=24 \\ & 4 \times 6=24 \end{aligned}$

Calculation Progression - Division

Calculation Progression - Division

Year 5
Key Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array, prime numbers, composite numbers.

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12×12.	Children continue to deepen their understanding of the link between multiplication and division and use physicalobjects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sortinginto equal groups.	Children apply their understanding of inverse relationships to write related multiplication and divisionstatements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know whateach number represents in the calculation.
To recognise and use factor pairs ofa number and find common factors of two numbers.	Children use physical objects to create arrays tosupport their understanding of factors. Find the common factors of 18 and 24 The common factors are 1, 2, 3 and 6 .	Children investigate finding factors by drawing arrays tofind all solutions. They then find factors which belong toboth numbers. Find the common factors of 18 and 24 Factors of 24 Factors of 18 The common factors are 1, 2, 3 and 6 .	Children use multiplication and division facts to findfactors of numbers. Find the common factors of 18 and 24 Factors of 18 Factors of 24 (1) $\times 18$ (1) $\times 24$ (2) $\times 9$ (2) $\times 12$ (3) \times (6) (3) $\times 8$ The common factors are 1, 2, 3 and 6.

Calculation Progression - Division

			This three-digit number has $\mathbf{2}$ and 7 as factors. 294 Write another three-digit number which has $\mathbf{2}$ and 7 as factors.
To establish whether a numberup to 100 is primeand recall prime numbers up to 19.	Children find prime numbers and composite (non-prime numbers) by using arrays. They understand that composite numbers form arrays and prime numbers cannot be arranged into arrays.	Children use jottings and pictorial representations to investigate composite and prime numbers.Prime Numbers	Children use their knowledge of multiples and factors tofind the prime numbers up to 100 . They eliminate numbers that have factors other than 1.They can recall all prime numbers up to 19.
		(7)	
		$0000 \quad 000000$ OO	
		$000 \quad 000000 \quad \because 0$	
			(41) 42 (43) 44 45 46 (47) 48 49 56
		(11)	
		$00000 \quad 00000000 \quad 0:$	61 62 63 64 65 66 67 68 69 70
	97	$000000 \quad 00000000$	
	composite prime		84 82 83 84 85 86 87 88 89 96
	number number	0000 0000	

Calculation Progression - Division

Calculation Progression - Division

Calculation Progression - Division

Year 6
Key Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array.

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12 x 12.	Children continue to deepen their understanding of the linkbetween multiplication and division and use physical objectsto find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sortinginto equal groups. $\begin{aligned} & 18 \div 3=6 \\ & 3 \times 6=18 \end{aligned}$ $18 \div 6=3$ $6 \times 3=18$	Children apply their understanding of inverse relationships towrite related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what eachnumber represents in the calculation.
To identify common factors.	Children use physical objects to create arrays to supporttheir understanding of factors. Find the common factors of 18 and 24 Factors of 18 The common factors are $1,2,3$ and 6 .	Children investigate finding all factors of a number by drawing arrays. They then find factors which arethe same in both numbers. Find the common factors of 18 and 24 Factors of 24 Factors of 18	Children use their knowledge of multiplication and divisionfacts to find factors of numbers. Find the common factors of 18 and 24 The common factors are $1,2,3$ and 6 .

Calculation Progression - Division

		The common factors are 1, 2, 3 and 6.	
To establish whether a number up to 100 is prime andrecall prime numbers up to 19.	Children find prime numbers and composite (non-prime numbers) by using arrays. They understand that composite numbers form arrays and prime numbers cannot be arrangedinto arrays.	Children use jottings and pictorial representations to investigate composite and prime numbers.	Children use their knowledge of multiples and factors to find the prime numbers up to 100.They eliminate numbers that have factors other than 1.They can recall allprime numbers up to 19.
To use a formal written method of short division(bus stop method). Larger numbers $\div 1$ digit number (involving remainders)	Children represent division calculations using concretematerials such as base 10 and place value counters. The children partition the dividend and put inside the busstop then divide each part by the divisor. The quotient is then recorded on the top line. The children work with numbers that involve remainders. $98 \div 7=14$ $432 \div 5=86 \mathrm{r} 2$	Children represent division calculations using informaljottings and pictorial representations. The children will recognise remainders. $432 \div 5=86 r 2$	In Year 6 children divide larger numbersiby a 1^{35} digit numbetwith $98 \div 7$ becomes $\begin{gathered} \|81\| 82\|83\| \\ 432 \div 5 \text { becomes } \end{gathered}$ 4.85 6 8 8 88 (89 90 $98 \quad 99$ 100 Answer: 14 Answer: 86 remainder 2 Children are expected to interpret non-integar answers by expressing results as fractions ($432 \div 5=86 \frac{2}{5}$), decimals ($432 \div 5=$ 86.4) or by rounding ($432 \div 5=86.4 \approx 86$ sweets) according to the context. Children apply their knowledge using word problems and number puzzles.

Calculation Progression - Division

			Sharon buys a pack of 24 cans of lemonade for $£ 6$. How muchdoes each can cost? Write the missing number. $70 \div \square=3.5$ Write the missing number in each calculation. $25 \div$ \square $=3$ remainder 4
To use a formal written methodof long division (bus stop method). Divide larger numbers $\div 2$ digit numbers (involving remainders)	Children represent division calculations using concretematerials such as base 10 and place value counters. The children partition the dividend and put inside the busstop then divide each part by the divisor. The quotient is then recorded on the top line.	Children represent division calculations using informaljottings and pictorial representations.	The children use the bus stop method as a formal method of written calculation. They use their understanding of the pictorial and concrete stages to understand the value of eachnumber. $432 \div 15=28 \text { r12 }$ Step one: Children will put the calculation into the bus stop grid and list their multiplesof the divisor. Step 2: Start with the hundreds. The divisor doesn't divide into 4 so combine the4 hundred with the 3 tens (430). Use the multiples of 15 to calculate the nearest multiple. Two $\times 15$ is 30 . Record this underneath, put the 2 on the top then subtract. Step 3: The divisor does divide into 13 so combine the 13 tens with the 2 ones (132).Use the multiples of 15 to calculate the nearest multiple. 8×15 is 120 . Record thisunderneath, put the 8 on the top then subtract. $\begin{array}{r} 028 \\ 15132 \\ 307 \\ 132 \\ 120 \\ \hline 12 \end{array}$

Calculation Progression - Division

