Calculation Progression - Multiplication

Early Years

Kev Vocabulary: multiplication, multiply, multiplied by, multiple, grouping, doubling, array
Times Tables: To count in steps of $2 s$ and 10 s and begin to count in 5 s .

Calculation Progression - Multiplication

Year 1
Key Vocabulary: multiplication, multiply, multiplied by multiple, grouping, doubling, array
Times Tables: Children in Year 1 need to count in steps of 2, 5 and 10.

Objective \& Strategy	Concrete	Pictorial	Abstract
To count in steps of 2,5 and 10 s .	Children will be able to use concrete resources to count in steps of 2,5 and 10.	Children will verbally say their number sequence aloud to demonstrate their understanding. Children would begin to count aloud and write numbers to match the sequence. E.g. $0,5,10,15,20$...	Children will be able to count aloud in sequences, starting at different points. Children will be able to write sequences with multiples of numbers $2,4,6,8 \ldots$ $\begin{gathered} 10,20,30,40 \ldots \\ 5,10,15,20,25,30 \ldots \end{gathered}$
To double numbers up to 20 .	Children will demonstrate knowledge of doubling through concrete resources, including uni-fix cubes. Double 20 equals 40. Double 16 equals 32 When beginning to double more complex numbers, children will need to explore partitioning the whole number into tens and ones, using base 10 , and double the tens and then the ones, before recombinging to find the total.	Children will be able to use jottings and picture representations to show demonstration of doubling. Double 16 equals 32	Children will learn to partition a number and then double each part before recombining it back together. Stem Sentence: Double $\underline{1}$ equals $\underline{2}$

Calculation Progression - Multiplication

To make equal groups and count the total.	Children will use concrete resources to make equal groups. Stem Sentence: I know there are $\underline{\mathbf{2}}$ groups with $\underline{\mathbf{6}}$ in each group.	Children will draw jottings and have pictorial representations to demonstrate knowledge of equal groups. $2 \times 6=12$ I know there are $\mathbf{2}$ groups and in each group there are $\mathbf{6}$ flowers.	$2 \times 6=12$ Stem Sentence: I know there are $\underline{\underline{2}}$ groups with $\underline{\mathbf{6}}$ in each group.
To understand multiplication as repeated addition.	Children will be able to use a range of concrete resources to add equal groups.	Children will use pictorial representations, including the use of a number line to solve problems. There are $\mathbf{3}$ sweets in 1 bag. How many sweets are in 5 bags altogether?	Children will be able to write addition number sentences to describe pictures or objects. $3+3+3+3+3=15$
To understand multiplication as arrays.	Children will create arrays using concrete objects, which they then can describe what it represents e.g. 2 lots of 5,3 lots of 10 .	Children will draw their own pictorial representations and will have the visually provided to show understanding of arrays. 2 lots of 5 3 lots of 2. 	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$

Calculation Progression - Multiplication

 three each ... ten each, equal groups of, multiplication table, multiplication fact.
Times Tables: children in Year 2 need to count in steps of 2, 3, 5 and 10s.

Objective \& Strategy	Concrete	Pictorial	Abstract
To double numbers up to 100 .	Model using base 10 to partition a number and then double the ones and the tens. Double 26 is 52	Draw pictures and representations to show how to double numbers. Double 26 is 52	Partition a number and then double each part before recombining back together.
To count in multiples of $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s (repeated addition).	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. am any many an an	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0,2 , $\begin{aligned} & 4,6,8,10 \\ & 0,3,6,9,12,15 \end{aligned}$ $0,5,10,15,20,25,30$
			$4 \times 3=$

Calculation Progression - Multiplication

Calculation Progression - Multiplication

Year 3
 one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact.

Times tables- Children in Year 3 need to be able to confidently count in steps of 2, 3, 4, 5, 8, 10, 50 and 100.

Objective \& Strategy	Concrete	Pictorial	Abstract
To use related multiplication and division facts using the inverse for the $2,3,4$, 5,8 and 10 times table.	Children understand the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups. $18 \div 3=6$ $18 \div 6=3$ $3 \times 6=18$ $6 \times 3=18$	Children apply their understanding of inverse relationships to write related multiplication and division statements. They use associated vocabulary correctly and know what each number represents in the calculation.
To use a formal written method of multiplication (grid method). 2-digit x 1 digit number	Children use partitioning to multiply numbers using the grid method. They partition the multiplicand and multiply each part by the multiplier. Children use base ten and place value counters to represent arrays of the partitioned number. $24 \times 3=72$ Use of place value counters finding the total	Children show their understanding by represent the calculation in the grid using their own pictorial representation. $24 \times 3=72$ Children use jottings to partition the multiplicand and multiply each part by the multiplier.	Formal Method The children use the grid method for larger numbers. They multiply numbers by first partitioning the multiplicand and then multiplying each part by the multiplier. In year 3 children are expected to multiply 2-digit by a 1 digit number. Children apply their knowledge of multiplication to word problems. There are 5 balloons in a packet. There are 18 packets in a box. How many balloons are there altogether in a box?

Calculation Progression - Multiplication

Year 4

 one each, two each, three each...ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed, distributive law.

Times tables- Children in Year 4 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12×12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.
To multiply and divide mentally, including: multiplying by 0 and 1 and multiplying together 3 numbers.	Children multiply and divide numbers by zero and one. They understand the meaning of the calculation and the need of equal sized groups. $6 \times 2=12$ $6 \times 1=6$ $6 \times 0=0$ Children use objects to calculate totals when three numbers are multiplied together. $2 \times 4 \times 5=40$	Children show their understanding of multiplying by 0 and 1 by drawing representations. $\begin{array}{ll} 4 \times 0=0 & 4 \times 1=4 \\ 0 \bigcirc 0 \bigcirc & \odot \odot \odot \end{array}$ Children use objects to calculate totals when three numbers are multiplied together. $2 \times 4 \times 5=40$ Or they may decide to represent it as $2 \times(4$ $\times 5) \quad 2 \times(20)=40$	Children understand how to multiply by 1 and 0 and apply to word problems. $\begin{array}{ll} 1 \times 83= & 76 \times 1= \\ 4567 \times 0= & 0 \times 23= \end{array}$ Jack earns $£ 12$ a week on his paper round. He did not work for one week whilst he was on holiday. How much did he earn? Children solve number puzzles using the knowledge of multiplying 3 single digit numbers.

Calculation Progression - Multiplication

Calculation Progression - Multiplication

Year 5

 one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed, distributive law.

Times tables- Children in Year 5 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12×12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of the inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.
To use a formal written method of multiplication (short multiplication). Up to 4-digit x 1 digit number	Children represent calculations using the place value counters and base ten equipment. They solve in a columnar form and begin by multiplying the ones, then the tens then the hundreds then the thousands before finding the total. $2741 \times 6=16,446$ $1 \times 6=6$ $40 \times 6=240$ $700 \times 6=4,200$ $2000 \times 6=12,000$	Children represent the calculation by drawing pictorial representations. They partition the multiplicandthen multiply each part by the multiplier They understand the place value and can confidently exchange between columns. This leads to the condensed method.	Formal Method In year 5 children are expected to multiply numbers up to a 4-digit by a 1 digit number. The children continue to use the condensed method of short multiplication but with larger numbers. The number is carried underneath between columns.

Calculation Progression - Multiplication

Calculation Progression - Multiplication

Calculation Progression - Multiplication

Year 6

 one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed.

Times tables-children in Year 4 needs to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12

Objective \& Strategy	Concrete	Pictorial	Abstract
To recall multiplication and division facts for multiplication tables up to 12 x 12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts.	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and division statements. They use associated vocabulary correctly and know what each number represents in the calculation.
To multiply whole numbers and those involving decimals by 10 , 100 and 1,000	Children use resources to understand what 10, 100 and 1000 times bigger looks like. 30 is ten times bigger than 3. 300 is ten times bigger than 30 . 300 is one hundred times bigger than 3 . 300	Children use place value grids to multiply numbers by 10,100 and 1000 s. They understand the movement of the digits left on the place value grid. Multiplying digits move LEFT 1 space digits move LEFT 2 spaces digits move LEFT 3 spaces $123 \times 100=12300$ They apply this knowledge to decimal numbers. $7.9 \times 1000=7900$	Children apply their knowledge of place value to multiply numbers by 10 , 100 and 1000, including decimal numbers. $\begin{aligned} & 34 \times 100=3400 \\ & 1234 \times 1000=1234000 \\ & 5.6 \times 10=56 \\ & 12.367 \times 100=1236.7 \end{aligned}$ They apply their knowledge to word and number puzzles. Here are five number cards. Use four of the cards to complete these calculations. $\begin{aligned} & 47 \div \square=\square=\square=40.7 \end{aligned}$

Calculation Progression - Multiplication

Calculation Progression - Multiplication

