Calculation Policy

Key Document Details

School Name:	St Mary's Primary School		
Version no:	1	Ratified date:	September 2021
Author:	Principal	Interim review date n/a	
Owner:	Principal	Next review date:	September 2022
Approved by:	Regional Director for Primary Schools		

EYFS			
Number - addition and subtraction		Number - multiplication and division	
add two single digit numbers aggregation Counters on plates 1, 2, 3, 4, 5, 6. Bead strings or bead bars can be used to illustrate addition including bridging ten by counting on 2 then 3. 12345678 $5+3=8$ $5 \quad 678$ Count on to find the answer augmentation Practically with objects, fingers etc. $5+2$ "Put 5 in your head, 6, 7." Dice... $4+3=7$ On a prepared number line (start with the bigger number)... $2+4=6$	subtract two single digit numbers reduction Counters on plates 6 take away 1 leaves $1,2,3,4,5$. Cross out drawn objects to represent what has been taken away: 3 take away 2 is 1 Start with $3 . . .2,1$. Count on or back to find the answer Practically, for example: Group objects on a table then cover some to visualize the calculation: 2 less than 4 is 2 Start with 2... 3, 4. Coins I had 10 pennies. I spent 4 pence. How much do I have left? Start with 10... 9, 8, 7, 6 .	solve problems including doubling Practically double a group of objects to find double of a number by combining then counting the two groups: Double 4 is 8 . is 10	solve problems including halving and sharing Sharing objects One for you. One for me... Is it fair? How many do we each have? 15 shared between 5 is 3 . 15 shared between 5 Grouping objects Put groups of objects on plates. How many groups of 4 are there in 12 stars?
understand and use vocabulary for addition add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more... how many more to make... ? how many more is... than...? is the same as	understand and use vocabulary for subtraction take (away), leave, how many are left/left over? how many have gone? one less, two less... ten less... how many fewer is... than...? difference between is the same as	understand and use vocabulary for multiplication count on (from, to), count back (from, to), count in ones, twos... tens... is the same as	understand and use vocabulary for division half, halve, count out, share out, left, left over is the same as

record addition and subtraction in columns	record subtraction in columns	calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals ($=$) signs	calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals $(=)$ signs
Use partitioned column method.	Introduce partitioned column method where no exchanging is reaurired:	$3 \times 4=12$	$12 * 4=3$
Solve calculations that do not cross the tens boundary, until they are secure with the method. Then solve calculations that do cross the tens boundary. Use base 10 (diennes) to support the understanding of 'carrying' and the value of	$46-22=24 \quad 40+6$	Repertition of sentence with different vocabulary:	Reperition of sentence with different vocabulary:
-	-20+2	"3 times 4 equals 12"	"12 divided by 4 equals 3 "
$20+3 \quad{ }_{20+8}$	$20+4$	"3 lots of 4 are 12 "	"12 shared by 4 is $3^{\prime \prime}$
$+30+4{ }^{2} \quad \sum^{+\frac{10+3}{40+1}}=40$	use base 10 (diemes) to support understanding	"3 multiplied by 4 equals 12 "	"12 grouped into 45 is 3 "
57 ruwn		"The product of 3 and 4 is 12 "	
$28+13$			

Use all the models and images mentioned above. Discuss which is most effective mentioned above. Discuss which is most effective Singapore Bar Method
$15 \div 5=3$

,	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\cdots	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark
\checkmark	\cdots	\checkmark

can be done in any order (commutative)
show that division of one number by another cannot be done in any order
heck their calculations, including adding numbers in a different order to check addition (for example, $5+2+1=1+5+2=1+2+5$) - establishing Commutativity and associativity of addition See models and images above.
eognise and use the inverse relationship between addition and subtraction and use this to check calculations
see models and images above.

xtend their understanding of the language of addition to include sum

-, add, more, plus, make, sum, total, altogether, score, double, near double, on
, orare, two more..., ten more, How many more to make...? How many more is...
han.? How much more is..? Repetition of facts with different vocabulary
What is 2 add 5 ?" "What is 2 more than 5?"
What is 2 plus 5?" What is the total of 2 and 5 ?" etc
= equals, sign, is the same as
check their calculations, including by adding to check subtraction
See models and images above.

Tinshi between addition and subtraction and
se this to check calculations
See models and images above.
extend their understanding of the language of subtraction to include difference -subtract, subtraction, take (away), minus, leave, how many are left/left over? ne less, two less...ten less... one hundred less, how many fewer is... than..? how
nuch less is... difference between, half, halve, tens boundary $13+5=8$ Repetition of sentence with different vocabular
13 subtract 5 equals 8 " " 5 less than 13 is 8
"13 take away 5 equals 8 " "The difference between 13 and 5 is 8 " etc equals, sign, is the same as

se a variety of langues to describe mutiplication

count on (from, to), count back (from, to), count in ones, twos, threes, fours
fives.. count in tens, lots of, groups of, x, times, multiply, multiplied by,
mult tiple of,
= equals, sign, is the same as
sse a variety of language to describe division
Array, row, column, halve, share, share equally, one each, two each,
three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided into, left, left over

Number - addition and subtraction
Number - multiplication and division

Number - addition and subtraction

Partition both numbers and recombine
$2358+773$
$2358+7730+50+8+700+70+3$
$2000+300+50+8+700+70+3$
$=2000+1000+120+$
$=3000+100+30+1$
$=3131$
Partitioning with number lines

artition second number only into hundreds, tens and ones and recombine
$2358+773=2358+700+70+3$ $=3058+70+3$ $=3128+3$ = 3131
Add the nearest multiple of 10 or 100 , then adjust
$458+79=458+80-1$

Subtract the nearest multiple of 10 or 100 , then adjus

$458-79$	$=458-80+1$
	$=378+1$
	$=379$

Find a difference by counting up

$$
8006-2999: 5013
$$

Use known number facts and Use known number facts and
place value to subtract (partition second number only)

12462-2300

$$
=12462-2000-300
$$

$$
=10462-300
$$

$=10162$

Number - multiplication and division

multiply numbers mentally drawing upon known facts Partition	divide numbers mentally drawing upon known facts
$47 \times 6=(40 \times 6)+(7 \times 6)$	Partitioning
$=(240)+(42)$	
$=282$	$=20+4$
Double and halve	$=24$
$25 \times 16=50 \times 8=100 \times 4=200 \times 2=400$	
multiply whole numbers and those involving decimals by 10,100 and 1000 Place Value	divide whole numbers and those involving decimals by 10,100 and 1000 Place Value
	Th H V, thth
identify multiples, (and use them to construct equivalence statements, e.g. $4 x$ $\left.35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10\right)$	identify factors, including finding all factor pairs of a number, and common factors of two numbers (and use them to construct equivalence statements, e.g. $\left.4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times 10=9^{2} \times 10\right)$
Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.	Use a variety of resources (including a calculator) to investigate factors. Make models and images to display facts.
recall prime numbers up to 19 establish whether a number up to 100 is prime	recall prime numbers up to 19 establish whether a number up to 100 is prime
Play games, chant, test etc to increase speed of recalling facts.	Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.	Make models and images to display facts.
Investigate patterns within primes.	Investigate patterns within primes.
recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	
Use a variety of resources (including a calculator) to investigate square and cubed numbers. Make models and images to display facts.	
Investigate the patterns within squared and cubed numbers.	

Column addition

124.90	(add in a zero to keep
$+\frac{117.25}{242.15}$	the place value)

To ensure conceptual understanding, it is essential that place value is reinforced by frequently. (De of each digit.
Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value.
Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value
Children should be made aware that it is essential to align the columns carefully.

Pupils should be able
to add more than 2
numbers using the
3.25
+4.13
compact column
method.

$\frac{0.76}{8.14}$

$\frac{8.14}{11}$
subtract numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

Revision of formal compact column

method extending to calculations ${ }^{2} 8^{\prime \prime} X^{1} 0{ }^{\prime} \${ }^{1} 6$
involving numbers with more than $4-2128$
digits
digits (use Diennes to support
and place value).
When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed.

- $5 / 1 \% 1$ Use Diennes or place value
ounters (add counters with 0.1)
26.5
236.5
decomposition and place value.
multiply numbers up to 4 digits by a one- or two-digit number
written method, including long multiplication for two-digit numbers
Review formal method of short multiplication (for multiplying by one digit numbers) when proficient

Start with grid method when multiplying by 2 digit numbers
72×38 is approximately $70 \times 40=2800$

\section*{| x | 70 | 2 |
| :---: | :---: | :---: |
| 30 | 2100 | 60 |
| s | 560 | 16 | $\begin{array}{r}\begin{array}{r}2160 \\ 576\end{array}+ \\ \hline 2736 \\ \hline 1\end{array}$}

Move onto formal long multiplication

Then formal multiplication with more complex numbers:

$$
\begin{array}{r}
34 \\
\times 13 \\
\hline 102 \\
1 \\
340 \\
\hline 442
\end{array}
$$

divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the
context (as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4=$ 24 r $2=24 \frac{1}{2}=24.5 \approx 25$)

86 r 2 Pupils should consider whether remainders should be left as a reminder. rounded to the neares whole or converted into decimal or fraction.

Introduce long division (dividing by single digits)
$256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$

256	
$-\frac{70}{186}$	(10 groups) or (10×7)
$\frac{140}{46}$	(20 groups) or (20×7)
$-\frac{42}{4}$	$\frac{(6 \text { groups }) \text { or } \frac{(6 \times 7)}{(36 \text { groups }) \text { or }(36)}}{}$

Answer: 36 remainder 4
Start with units for formal method of long multiplication.
solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images men Hioned above. Discuss which is most effective and why
Singapore Bar Method
solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.
Singapore Bar Method

larger quantity
larger quantity
smaller quantity $\underbrace{\text { ander }}_{\text {difference }}$

 multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres
Se all the models and images mentioned above Discuss which is most effective and why.

use and explain the equals sign to indicate equivalence, including missing number se and explain the equals sign to indicate express distributivity, for example as $a(b+c)=a b+c$
se all of the models and images above to investigate a range of statements. ensuring the equals sign is indirent positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or and reasoning. Display solutions

Solve problems that use multiplication and division as inverses, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and multiplying and dividing by powers of 10 in scale drawings or by multiplying and
dividing by powers of a 1000 in converting between units such as kilometres and metres
Use all the models and images mentioned above Discuss which is most effective and why.

Singapore Bar Method

use and explain the equals sign to indicate equivalence, including missing number problems (e.g, $13+24=12+25 ; 33=5 \times[]$)

Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions a starting point

use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe addition + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe multiplication know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double,, inverse, prime, equals, sign, is the same as	use a variety of language to describe division Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse. Prime, factors equals, sign, is the same as

Year 6

perform mental calculations, including with mixed operations and

 large numbers (and decimals)Partition both numbers into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =30+5+0.8+7+0.3 \\
& =30+12+1.1 \\
& =42+1.1 \\
& =43.1
\end{aligned}
$$

Partition second number only into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =35.8+7+0.3 \\
& =42.8+0.3 \\
& =43.1
\end{aligned}
$$

Add the nearest whole number then adjust

$$
\begin{aligned}
52+11.9 & =52+12-0.1 \\
& =64-0.1 \\
& =63.9
\end{aligned}
$$

practise addition for larger numbers, using the formal written methods of columnar addition

Extend the use of compact column method to adding several numbers with mixed decimals.

Children should be reminded of the importance of aligning the columns accurately.

Where there is an 'empty' space in a decimal column, pupils could insert a zero to show the value.
perform mental calculations, including with mixed operations and large numbers(and decimals)

Use known number facts and place value to subtract

$$
6.1-2.4=3.7
$$

3.7
4.1
6.1

-0.4

-2

Subtract the nearest whole number then adjust
$52-11.9=52-12+0.1$ $=40+0.1$
$=40.1$

Revision of formal compact column method extending to more complex integers and applying to problem solving using money and measures, including decimals with different numbers of decimal places. Align the decimal point when setting out calculations.
Use 'place holders' to aid understanding of the value in that column

$$
\begin{array}{r}
710 \cdot 5 \cdot 3 / 4119 \mathrm{~kg} \\
-36 \cdot 080 \mathrm{~kg} \\
\hline 69 \cdot 339 \mathrm{~kg}
\end{array}
$$

practise subtraction for larger numbers, using the formal written methods of columnar subtraction

Column Subtraction with decomposition

$$
\begin{array}{rrr}
81414 & 8.36 & \text { Including } \\
-\frac{286}{468} & -\frac{1.17}{7.19} & \begin{array}{l}
\text { decimals }
\end{array}
\end{array}
$$

.

$$
\begin{array}{lllll}
& & 5 & 2 & 8 \\
\hline & & r_{12} & 3 & 2 \\
& 3 & 0 & 0 \\
& 1 & 3 & 2 \\
& 1 & 2 & 0
\end{array}
$$

$432 \div 15$ becomes
perform mental calculations, including with mixed operations and perform mental calculations,
large numbers(and decimals)

Partitioning

$$
\begin{aligned}
4.7 \times 6 & =(4 \times 6)+(0.7 \times 6) \\
& =(24)+(4.2) \\
& =28.2
\end{aligned}
$$

Partitioning
perform mental calculations,

Partitioning

$$
\begin{aligned}
7.2 \text { पाउ } & =(6 \text { व०3 })=(1.2 \text { प० } 3) \\
& =2+0.4 \\
& =2.4
\end{aligned}
$$

Double and halve
$4.25 \times 32=8.5 \times 16$
$=17 \times 8$
$=34 \times 4$
$=68 \times 2$
$=136$
identify common factors, common multiples and prime numbers
Se a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication

Short multiplication and Long multiplication as in Year 5, but apply
to numbers with decimals.

$3 \cdot 119$
$\times 8$
$25 \cdot 5$

Pupils may need reminding that single digits belong in the ones (units) column.
A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication
identify common factors, common multiples and prime numbers
Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the pattern within the numbers.
divide numbers up to 4 digits by a two-digit whole number using the formal written method of short and long division, and the formal written method of short and long division, and
interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Short division

Short division

models and images to display facts. Investigate the patternswithin the numbers.$98 \div 7$ becomes
144
$79^{2} 8$
$432 \div 5$ becomes
$88^{8}{ }^{2} 2$
$53^{3} 2$
Answer: 86 remainder 2
$4 \quad 5 \mathrm{rI}$
$149^{5}{ }_{6}$
Answer: $45 \frac{1}{11}$

Long division (for dividing by 2 digits)

Long division

$432 \div 15$ becomes

 -
 -
\qquad

都

$$
\begin{aligned}
& \text { Answer: } 28 \frac{4}{5}
\end{aligned}
$$

Answer: 28 remainder 12

Remainders
Quotients expressed as fractions or decimal fractions $61 \div 4=15 \frac{1}{4}$ or 15.25
solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the nearest 10, 20, 50 etc., but not to a specified number of significant figures

Use knowledge of rounding to create estimates.

use their knowledge of the order of operations to carry out

 calculations involving the four operations explore the order of operations using brackets; for example, $2+1 \times 3=5$ and ($2+1$) $\times 3=9$Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations
use estimation to check answers to calculations and determine, in
the context of a problem, an appropriate degree of accuracy
Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check) use a variety of language to describe subtraction

+ add addition, more, plus, increase sum, total altogether score, double, near double, how many more to make.? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse
= equals, sign, is the same as
solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc but not to a specified number of significant figures

Use knowledge of rounding to create estimates.
use their knowledge of the order of operations to carry out use their knowledge of the order of operations to carry out
calculations involving the four operations explore the order of operations using brackets: for example, $2+1 \times 3=5$ and $(2+1)$ $\times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect.
Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check). use a variety of language to describe subtraction
subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse
equals, sign, is the same as

solve problems involving multiplication

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

round answers to a specified degree of accuracy, for example, to the nearest 10, 20,50 etc. (not to specified number of significant figures)

Use knowledge of rounding to create estimates.
use their knowledge of the order of operations to carry out use their knowledge of the order of operations to carry out
calculations involving the four operations explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1)$ $\times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect
Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation.
Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction
x lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times ... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column double, inverse
= equals, sign, is the same as

solve problems involving division

Use all the models and images mentioned above. Discuss which is most effective and why

Singapore Bar Method

round answers to a specified degree of accuracy, e.g. to the nearest $10,20,50$ etc but not to a specified number of significant figures

Use knowledge of rounding to create estimates.
use their knowledge of the order of operations to carry out calculations involving the four operations explore the order of operations using brackets: for example, $2+1 \times 3=5$ and $(2+1)$ $\times 3=9$

Review and investigate the effect of carrying out operations in different orders. Explore the effect.
Introduce and use BODMAS to solve calculations.
use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check). use a variety of language to describe subtraction

Array row column, halve, share, share equally one each two each three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder factor quotient divisible by, inverse
$=$ equals, sign, is the same as

