'Learning by Heart'

Developing children's knowledge of mathematical facts so that they know them 'by heart' is a valuable tool to support calculation strategies, and also helps to build confidence. Regular practice is needed to secure knowledge and help children instantly recall facts. We encourage children to think 'Can I do this in my head?' Having a range of number facts at their fingertips really empowers the children and enables them to approach tasks with confidence.

Year 6 Autumn Term I: To multiply and divide whole and decimal numbers by 10,100 and 1000 When you multiply by 10,100 or 1000 , the place value of the digits change. The number is getting greater so the digits move to the left.

Multiply by 10

When you multiply by 10 all the digits move one place to the left.
$21 \times 10=210$

The tens digit moves to the hundreds. The ones digit increases in value to become a ten
Why is there now a zero in the ones column?
You need to include a zero to represent the fact that now the other digits have increased in value. There are now no ones.
If you didn't include the zero in the ones, the number would still look like twenty-one, not two hundred and ten.
Multiply by 100
When you multiply by 100 move all the digits two places to the left
$21 \times 100=2100$

Multiply by 1000
What do you think will happen when you multiply by 1000?
The digits move three places to the left
$21 \times 1000=21,000$

The same principle applies to decimal numbers:
Multiplying and Dividing by 10,100 and 1000

Multiplying
x_{10}
10 datis move Letrt ince
Diving

If the place value of the digits increases and move to the left when multiplying, then it makes sense that the place value of the digits decreases and move to the right when dividing by a power of $I O$, since it is the inverse operation.

Dividing by 10

When you divide by 10 move the digits one place to the right
$210 \div 10=21$

Since the digits have moved to the right, the zero also moves place value - it does not just disappear! The zero also moves to the right into the tenth's column after the decimal point.
So you could write 21.0. But since there's nothing to show after the decimal point, we just don't write it.

Dividing by 100
When you divide by 100 , move the digits two places to the right.
$2100 \div 100=21$

Dividing by 1000

If you divide by 1000 move the digits three places to the right.
$21,000 \div 1000=21$

$\mathbf{T T h}$	$\mathbf{T h}$	\mathbf{H}	\mathbf{T}	$\mathbf{0}$
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
			2	1

Vocabulary:
Multiply place value move digits greater Divide smaller zero place holder increase decrease Thousands tens ones tenths hundredths thousandths decimal point

Autumn Term 2: Consolidate multiplication and division facts to 12×12 and 10

 $\times 100$- Step I - Consolidate knowledge of times tables from $\times 2 \rightarrow \times 10$, recalling the times tables in order
- Step 2 - Ask random times tables questions requiring a deeper knowledge and understanding of the number facts. Add the element of a 'time challenge' as your child becomes more efficient e.g. How many can you get right in I minute? or give a 10 second time limit per answer. Challenge your child to work out the answer before you can - adding some competition.
- Step 3 - Give the multiplication fact and ask for a linked division fact e.g. $3 \times 4=12$ child could answer with $12 \div 3=4$ or $12 \div 4=3$
- Step 4 - Recall of division facts $45 \div 9=$?

For example:			
$0 \times 9=0$	$9 \times 0=0$		
$1 \times 9=9$	$9 \times 1=9$	$9 \div 9=1$	$9 \div 1=9$
$2 \times 9=18$	$9 \times 2=18$	$18 \div 9=2$	$18 \div 2=9$
$3 \times 9=27$	$9 \times 3=27$	$27 \div 9=3$	$27 \div 3=9$
$4 \times 9=36$	$9 \times 4=36$	$36 \div 9=4$	$36 \div 4=9$
$5 \times 9=45$	$9 \times 5=45$	$45 \div 9=5$	$45 \div 5=9$
$6 \times 9=54$	$9 \times 6=54$	$54 \div 9=6$	$54 \div 6=9$
$7 \times 9=63$	$9 \times 7=63$	$63 \div 9=7$	$63 \div 7=9$
$8 \times 9=72$	$9 \times 8=72$	$72 \div 9=8$	$72 \div 8=9$
$9 \times 9=81$	$9 \times 9=81$	$81 \div 9=9$	$81 \div 9=9$
$10 \times 9=90$	$9 \times 10=90$	$90 \div 9=10$	$90 \div 10=9$

Practical ideas to help your child
Chanting is still an effective way to learn multiplication tables. Musical times tables tapes are also quite useful - children often learn the 'rhythm and rhyme' of a song quite quickly and therefore learn to recite and recall the facts.
It is really important that children are as confident with division facts as they are with multiplication facts.
Practice the idea of 'Family of facts' e.g.
if \mid know that $4 \times 9=36 \ldots$. 1 also know $9 \times 4=36$
that $36 \div 9=4$ and that $36 \div 4=9$
Vocabulary

$$
\begin{array}{ccc}
\text { times } & \text { multiply } & \text { multiple of } \\
\text { lots of } & \text { groups of } & \text { divided by }
\end{array}
$$

St Matthew's C.E. Primary Academy

Rapid Recall and Deriving Facts

Parent's and carer's guide to support children with the 'Learning by Heart'
programme

Autumn Term

