This progression document aims to give guidance on the progression of Mathematics knowledge and skills across St. Paul's Catholic Primary School. It can be used by teachers to differentiate work \& expectations appropriately for pupils working above and below age-related expectations. Pupils should also be encouraged to access mathematical problems presented in a wide range of different, complex ways, ask their own mathematical questions and follow their own lines of enquiry when exploring an open-ended maths problem. Pupils' use of mathematical language, fluency in the fundamentals, reasoning mathematically following a line of enquiry and solving problem by applying their mathematical skills should be evident in their mathematics books.

Mathematics Pedagogical Approach

In Mathematics, we recognise the importance of pedagogy and we make use of various approaches that are backed by cutting-edge research and developments in both education (in general) and Mathematics specifically.
Behaviourism: Direct teacher instruction; explicit modelling of skills and techniques-fading and demonstration.
Constructivism: Inquiry-based learning through skill development.
Social Constructivism: Teacher modelling; variety of questioning methods; variety of independent, paired and group activities.
Liberationism: Pupil-led learning (when appropriate); opportunities to holistically develop the learner through enriching experiences.
Retrieval: Teachers identify key areas of development and misconceptions from previous lessons, topics and terms. (Daily, Weekly and Monthly review)
Diagnostic Questioning: Teachers employ diagnostic questioning throughout the lesson to gauge understanding and scale the level of challenge. (Ask questions).
High Quality Formative Assessment: Teachers check for understanding at various points of the lesson: this drives our lessons. (Ask questions, check student understanding, obtain high success rate -80%).
Concrete/Pictorial/Abstract: Teachers use concrete concepts (manipulatives), pictorial representations (bar models etc.) and abstract concepts (symbols + , -) to structure learning. (New material in small steps, Provide models).
Reasoning, Problem Solving, Proving: Opportunities to reason, problem solve and prove answers are given in lessons.
High-Level Vocabulary: Teachers use and model high-level mathematical vocabulary in lessons and during problem-solving activities / worked examples.
Self and Peer Assessment: Pupils are equipped with the skills to assess their own and each other's work positively, respectfully but critically: they use this to provide feedback and appropriate changes.
Worked Examples: Teachers provide step by step demonstrations on how to solve a problem. This directs learners' attention to the important part of the concept and allows for a deeper conceptual understanding. (Guided student practice, scaffold for difficult tasks).
Success Criteria: Teachers use success criteria to aid cognitive development and scaffold this as appropriate.
Mastery Approach: Teachers aim for mastery by deepening understanding and giving opportunities for independent maths. (Independent practice)

	Mathematics Progression Map					
EYFS		KS1			KS2	
Number and Place Value						
Counting						
EYFS Three and four year olds Reception ELG	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Recite numbers past 5. • Say one number name for each item in order: 1, 2, 3, 4, 5. Know that the last number reached when counting a small set of objects tells you how many there are in total ('cardinal principle'). Count objects, actions and sounds. Count beyond ten. Verbally count beyond 20, recognising the pattern of the counting system.	count to and across 100, forwards and oackwards, beginning with 0 or 1, or from any siven number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of 4, 8, 50 and 100;	count in multiples of 6, 7, 9, 25 and 1 000	count forwards or backwards in steps of powers of 10 for any given number up to 1 000000	
	given a number, identify one more and one less					

Compare quantities using language: 'more than', 'fewer than'. Compare numbers. Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.	use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100 ; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1 000	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
				compare numbers with the same number of decimal places up to two decimal places (Also in fractions)		
Identifying, Representing and Estimating Numbers						
Develop fast recognition of up to 3 objects, without having to count them individually ('subitising'). Show 'finger numbers' up to 5. Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5. Experiment with their own symbols and marks as well as numerals.	identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

Subitise. Link the number symbol (numeral) with its cardinal number value. Subitise (recognising quantities without counting) up to 5 .						
Reading and Writing Numbers (including Roman Numerals)						
Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5. Experiment with their own symbols and marks as well as numerals. Link the number symbol (numeral) with its cardinal number value.	read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks (Also in Measurement)	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Comparing Numbers) read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value
Understanding Place Value						
Understand the 'one more than/one less than' relationship between consecutive numbers. Explore the composition of numbers to 10. Have a deep understanding of numbers to 10 , including the composition of each number.		recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) find the effect of dividing a one- or two-digit number	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers) identify the value of

			by 10 and 100 , identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	each digit to three decimal places and multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places (copied from Fractions)
Rounding					
			round any number to the nearest 10, 100 or 1000	round any number up to 1000000 to the nearest 10, 100, 1 000, 10000 and 100 000	round any whole number to a required degree of accuracy
			round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
Problem Solving					
Solve real world mathematical problems with numbers up to 5 .	use place value and number facts to solve problems	solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

Number: Addition and Subtraction

Number Bonds

Written Methods

Problem Solving						
Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$	solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division

Number: Multiplication and Division

Multiplication and Division

count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of $6,7,9,25$ and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)

		calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one- digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a onedigit number using formal written layout	multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
					divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

				use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))
Properties of numbers: prime, square, cube, factors and multiples.				
		recognise and use factor pairs and commutativity in mental calculations (repeated)	factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19	didentify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
			recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm3) and cubic metres (m3), and extending to other units such as mm3 and km3 (copied from Measures)

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { lajects are } \\ \text { connected to } m \\ \text { objects }\end{array} \\ \begin{array}{l}\text { ombination of these, } \\ \text { including } \\ \text { understanding the } \\ \text { meaning of the }\end{array} \\ \text { equals sign } \\ \text { solve problems } \\ \text { involving } \\ \text { multiplication and } \\ \text { division, including } \\ \text { scaling by simple } \\ \text { fractions and } \\ \text { problems involving } \\ \text { simple rates }\end{array}\right]$

Ratio and Proportion

Statements only appear in Year 6 but should be connected to previous learning, particularly fractions and multiplication and division
$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { solve problems involving } \\ \text { the relative sizes of two } \\ \text { quantities where } \\ \text { missing values can be } \\ \text { found by using integer } \\ \text { multiplication and } \\ \text { division facts }\end{array} \\ \hline & & & & \begin{array}{l}\text { solve problems involving } \\ \text { the calculation of } \\ \text { percentages [for } \\ \text { example, of measures, } \\ \text { and such as 15\% of 360] }\end{array} \\ \text { and the use of } \\ \text { percentages for } \\ \text { comparison }\end{array}\right]$

	before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]		taken by particular events or tasks			
			estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Measuring and Calculating						
	measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
			measure the perimeter of simple 2D shapes	measure and calculate the perimeter of a	measure and calculate the perimeter of	recognise that shapes with the same areas can have different

				rectilinear figure (including squares) in centimetres and metres	composite rectilinear shapes in centimetres and metres	rs and vice
	recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			
				find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes recognise and use square numbers and cube numbers, and the notation for	Iculate the area of arallelograms and riangles alculate, estimate and ompare volume of ubes and cuboids using andard units, including bic centimetres (cm3) nd cubic metres (m3), nd extending to other its [e.g. mm3 and m3]. cognise when it is ossible to use formulae

					squared (${ }^{2}$) and cubed (${ }^{3}$) (copied from Multiplication and Division)	for area and volume of shapes
Telling the Time						
Begin to describe a sequence of events, real or fictional, using words, such as 'first', 'then...'	tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks	read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)		
	recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
				solve problems involving converting from hours to minutes; minutes to seconds; years to	solve problems involving converting between units of time	

			months; weeks to days (appears also in Converting)		
Converting					
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	
			read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Telling the Time)	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres

Position, direction and movement

Understand position through words alone - for example, "The bag is under the table," - with no pointing. Describe a familiar route. Discuss routes and locations, using words like 'in front of' and 'behind'. Draw information from a simple map.	describe position, direction and movement, including half, quarter and threequarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
				plot specified points and draw sides to complete a given polygon		
			attern			
Talk about and identify the patterns around them. For example, stripes on clothes, designs on rugs and wallpaper. Use informal language like 'pointy', 'spotty', 'blobs', etc. Extend and create ABAB patterns - stick, leaf, stick, leaf. Notice and correct an error in a repeating pattern. Continue, copy and create repeating patterns.		order and arrange combinations of mathematical objects in patterns and sequences				

	the1/2 and 2/4 equivalence on the number line (Non Statutory Guidance)				
Recognising fractions					
recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} /{ }_{3}$, ${ }^{1} / 4^{\prime}{ }^{2} / 4$ and $^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
		recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10.			
recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators			
Comparing Fractions					
		compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all	compare and order fractions, including fractions >1

Addition and subtraction of fractions

					multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. ${ }^{1} / 4 \times$ $1 / 2=1 / 8$)
						multiply one-digit numbers with up to two decimal places by whole numbers
						divide proper fractions by whole numbers (e.g. $\left.1 / 3 \div 2=1 /{ }_{6}\right)$

Multiplication and division of decimals

				multiply one-digit numbers with up to two decimal places by whole numbers
		find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths		multiply and divide numbers by 10, 100 and 1000 where the answers are up to three decimal places

						identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
						associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)
						use written division methods in cases where the answer has up to two decimal places
Problem solving						
			solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	Ive problems volving numbers up three decimal aces	
			solve simple measure and money problems involving fractions and	solve problems which require knowing percentage		

		decimals to two decimal places.	and decimal equivalents of ${ }^{1} / 2^{\prime}$ ${ }^{1} / 4_{4^{\prime}}{ }^{1} / /_{5^{\prime}}{ }^{2} / /_{5^{\prime}}{ }^{4} / /_{5}$ and those with a denominator of a multiple of 10 or 25 .		
Statistics					
Interpreting, constructing and presenting data					
Experiment with their own symbols and marks, as well as numerals.	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
	ask and answer questions about totalling and comparing categorical data				
Solving Problems					

sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening (copied from Measurement)	lompare and sequence intervals of time (copied from Measurement)				
		generate and describe linear number sequences			
		order and arrange combinations of mathematical objects in patterns (copied from Geometry: position and direction)			

