St Teresa's Catholic Primary School Addition Calculation Policy

Respect - Resilience - Read - Retain

'Do the little things well'

Progression in Calculations- Addition

EYFS

Key Vocabulary: add, more, sum, make, total, How much more is...? one more, altogether.

Counting fluency: To count forwards and backwards in steps of $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

	Objective and Strategies	Concrete	Pictorial	Abstract
$\frac{\pi}{\frac{1}{ \pm}}$	To find one more than a given number up to 20 .	Use physical objects to add one object to find the whole. One more than 6 is 7 Modelled using counters for the Part Whole Method.	Use pictorial representations to add one object to find the whole. One more than 6 is 7 Modelled using Part- Whole with numbersrecorded.	Record as a written calculation. $\begin{aligned} & 6+1=7 \\ & 1+6=7 \end{aligned}$ $\begin{aligned} & 7=6+1 \\ & 7=1+6 \end{aligned}$
	To use objects to	Use physical objects to add two single objects to find the whole.	Use pictorial representations to add two single digits to find thewhole. Modelled using the Part Whole Method with numbers	Record as a written calculation. $\begin{aligned} & 5+3=8 \\ & 3+5=8 \end{aligned}$

add two single-digit numbers.	Modelled using counters for the Part Whole Method. Modelled using a Bead String	Modelled using a Number Line $5+3=8$	$\begin{aligned} & 8=5+3 \\ & 8=3+5 \end{aligned}$

Year 1

Key Vocabulary: addition, add, more, and, makes, sum, total, altogether, count on, one more, two more...ten more...., how many more to make? How many more is...than....? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

	Objective and Strategies	Concrete	Pictorial	Abstract
	To find one more than a	Use physical objects to find one or ten more than a givennumber.	Use pictorial representations to add. $\mathbf{1}$ more than $\mathbf{2 5}$ is $\mathbf{2 6}$ Modelled using the Part-Whole method with Base $\mathbf{1 0}$ then	Record as a written calculation
$\mathbf{2 4 + \mathbf { 1 } = \mathbf { 2 5 }}$				

given number up to 100. To find 10 more than a given number up to 100 .	Modelled Using Base 10 $\mathbf{1 0}$ more than $\mathbf{2 5}$ is $\mathbf{3 5}$ Modelled using Base 10	numbers 10 more than 25 is $\mathbf{3 5}$ Modelled using the Part-Whole method with Base 10 then numbers	$\begin{aligned} & 1+24=25 \\ & 25=24+1 \\ & 25=1+24 \end{aligned}$ Record as a written calculation $\begin{aligned} & 25+10=35 \\ & 10+25=35 \\ & 35=25+10 \\ & 35=10+25 \end{aligned}$
To represent \& use number bonds and related subtraction facts within 20.	Use physical objects to find related number facts. Number beads 2 more than 5 $5+2=7$	Use pictorial representations to show related number facts 2 more than 5 $5+2=7$	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' '2 more than 5 is 7. .' ' 8 is 3 more than 5.'

To combine
make a parts to
mhole: part-
whole model

Year 2

Counting fluency: To count forwards and backwards in steps of $2 s, 3 s, 4 s, 5 s$ and 10 s.

Mental strategies

Skill	Strategy
To add 9 to a 2-digit number by adjusting.	34+9 Make the number with base ten equipment, then add 10. You then need to subtract 1 because 10 is actually one more than 9 . Children will begin to do this mentallywithout equipment. For $34+9$ you would first add $1034+10=$ 44 then subtract 1 , $44-1=43 \text { so } 34+9=43 .$
To add near doubles	$13+14$ When numbers are very close in value, adjust one of numbers to make it the same then use knowledge of portioning to double then subtract 1 For $13+14=$ Make 13 into 14 by adding 1, double 14 by doubling 10 (20) and doubling 4 (8) and recombine (28). Then subtract the one that you added at the beginning (28-7) sp $13+14=27 .$

Objective and Strategies	Concrete	Pictorial	Abstract

,	To recall and use addition facts to 20 fluently.	Use physical objects to represent each part of calculation. Then usethis to show related addition facts. Modelled using part whole method.Children explore ways of making number bonds by moving the concrete objects around. $20=7+13$	Use pictorial representatives to explore addition facts to 20 . Children begin to showing their understanding by representing usingnumbers. Modelled using the part whole method with structured numbersentences to show relation facts. $\begin{gathered} \square+\square=20 \\ \square+\square \\ \square+\square=20 \\ \hline+\square \\ \end{gathered}$	Record as a written calculation $\begin{aligned} & \ldots+1=20 \\ & 1+\ldots=20 \\ & 20-1=- \\ & 20-\ldots=1 \end{aligned}$
$\stackrel{ঠ}{\sim}$	To derive and use related facts up to 100.	Use physical objects to show mathematical facts up to 100 . Modelled using Base 10 e.g. $3+3=6$ so... $\mathbf{3 0}+\mathbf{3 0}=\mathbf{6 0}$ $\square_{\square} \square^{\circ}+\square_{\square}=$	Use pictorial representations to show mathematical related facts. Children show their thinking using jottings to record their mathematical calculations. $\begin{aligned} & 3+3=6 \\ & 30+30=60 \\ & 300+300=600 \end{aligned}$	Record as a written calculation $3+4=7$ leads to... $30+40=70$ leads to... $300+400=700$

To add three single digits	Use physical objects to add three single digits numbers to 100. $4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Use pictorial representations to add three single digit number to 100.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
To add a 2digit number and ones up to 100 .	Use physical objects to add two-digit number and ones.	Use pictorial representatives to add two-digit number and ones to100. Use the Bar Model method to show number correspondence in orderto find the whole. Using the Bar Model to add $45+4=$? Use part- whole model and number line. $17+5=22$	Explore related facts.$17+5=22$22 17 5$\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$

Year 3

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, increased by, double, near double, one more, two more...ten more...., one hundred more, inverse, commutative law, how many more to make? How many more is...than...? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 s, 3 s, 4 s, 5 s, 6 s, 8 s, 10 s$ and 100 s from any given number.

Mental strategies

* Add three small numbers.	$6+14+5$	Look for any number bonds e.g $14+6=20$ then add 5 Add two number, find the total then add the final number.
*add a 3-digit number and ones, including crossing boundaries.	$\begin{aligned} & 432+\underline{6} \\ & 654++8 \\ & \text { partition } 8 \end{aligned}$	If the ones do not cross into the tens column then add the ones only $43 \underline{2}+\underline{6}=43 \underline{8}$ If the ones cross into the tens column then use knowledge of number bond to solve. For $65 \underline{4}+8$ you would and 2 then $654+6=660+2=662$.
*add a 3- digit number and tens including crossing boundaries	$\begin{aligned} & 534+40 \\ & 543+\underline{70} 0 \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $5 \underline{3} 4+\underline{4} 0=5 \underline{7} 4$ If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $5 \underline{4} 3+70$ you would partition 70 into $\underline{60}$ and 10 and then $543+60=603+10=613$
*Add a 3-digit number and hundredsincluding crossing boundaries.	$\begin{aligned} & \mathbf{5 2 4 + 3 0 0} \\ & \underline{654+5} \mathbf{-} \end{aligned}$	If the hundreds do not cross into the thousands column then add the hundreds only $\underline{5} 24+\underline{3} 00=\underline{8} 24$. If the hundreds cross into the thousands column then use knowledge of number bonds to solve. For $\underline{654+500}$ you would partition 500 into 400 and 100 then do654+ $400=1054+100=1154$
* Add a 2-digit number to a 3-digittens number including crossing boundaries.	$\begin{aligned} & 540+\underline{3} 4 \\ & \mathbf{6 2 0} \mathbf{2}+\underline{9} \mathbf{2} \\ & 92 \text { into } \underline{80}, \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $5 \underline{4} 0+\underline{3} 4=5 \underline{7} 4$. If the tens cross into the hundreds column then use knowledge of number bonds. For $6 \underline{2} 0+92$ you would partition and 2. Then do $620+80=700+10+2=712$
Add pairs of 2digit numbers including crossing boundaries.	$\begin{aligned} & 33+65 \\ & \text { tens } 30+60 \\ & \mathbf{2 \underline { 8 } + 6 \underline { 3 }} \end{aligned}$	If the tens do not cross into the hundreds column then add the tens and ones separately. For $33+65$ first add the then add the ones $90+3+2=95$ If the ones cross into the tens column add the tens then the ones and recombine. For $28+63$ add the tens $20+60=80$ then the ones $8+3=11$ then recombine $80+11=91$
*Add to any 3-digit number to makethe next ten or hundred.	$\begin{aligned} & 254+?=260 \\ & 543+?=600 \end{aligned}$ you reach th	Look for any number bonds e.g. $4+6=10$ so $25 \underline{4}+\underline{6}=260$ Look for the nearest multiple of 10 using knowledge of number bonds $54 \underline{\underline{3}}+\underline{7}=550$. Then add on in steps of 10 unt ultiple of $100.5 \underline{50}+\underline{50}=600$. The solution to $243+57=600$
*Add near doubles.	18+16 double 18 th 60+70 facts to doub	Adjust one number so they are the same e.g. 16 to make it 18 by adding 2. They then use their doubling facts to subtract 2. $18+18=36-2=34$ Adjust one number so they are the same e.g. 60 to make it 70 by adding 10. They then use using their doubling 0 and then subtract 10 . $\underline{70}+70=140-10=130$

To solve addition problems, including missing numbers.	Use physical objects to solve addition problems, including missing numbers. Children will need to solve problems that are incomplete using their knowledgeof inverse operations. $\begin{aligned} & 33=?+11 \\ & 11+?=33 \\ & ?+11=33 \end{aligned}$ The missing number can be presented in multiple places. Modelled using the Part Whole Method	Use pictorial representations to solve additionproblems, including missing numbers. Modelled using the Bar Model Use the bar model, children will make sense of the problembefore solving it. Modelled using the Part Wholemethod Children use their knowledge ofinverse operations to solve missing number problems effectively.	Record as a written calculation $37+\ldots=62$

Year 4

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more, two more...ten more...., inverse, commutative law, one hundred more, how many more to make? How many more is...than..? How much more is...?

Counting Fluency: To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting number.

Mental Strategies

Skill	Strategy	
*add a 4-digit number to ones includingcrossing boundaries.	$\begin{aligned} & 543 \underline{2}+\underline{6} \\ & 765 \underline{8}+\underline{8} \end{aligned}$	If the ones do not cross into the tens column then add the ones only $543 \underline{2}+\underline{6}=543 \underline{8}$ If the ones cross into the tens column then use knowledge of number bonds to solve. For 7654 +8 you would partition 8 into $\underline{6}$ and 2 then $7654+6=7660+2=7662$.
*add a 4-digit number to tens includingcrossing boundaries.	$\begin{aligned} & 65 \underline{27}+\underline{30} \\ & 4256+\underline{9} 0 \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $65 \underline{2} 7+\underline{3} 0=65 \underline{5} 7$. If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $42 \underline{5} 6+90$ you would partition 90 into $\underline{50}$ and 40 and then $4256+50=4306+40=4346$
*add a 4-digit number to hundredsincluding crossing boundaries.	$\begin{aligned} & 2 \underline{3} 78+\underline{4} 00 \\ & 2 \underline{z} 78 . \\ & 6 \underline{5} 27+\underline{700} \end{aligned}$	If the hundreds do not cross into the thousands column then add the hundreds only $2 \underline{3} 78+\underline{4} 00=$ If the hundreds cross into the thousands column then use knowledge of number bonds to solve. For $6 \underline{5} 27+700$ you would partition 700into 500 and 200 then $6527+500=7027+200=$ 7227.
*add a 4-digit number to thousandsincluding crossing boundaries.	$\begin{aligned} & \underline{5} 267+\underline{3} 000 \\ & \underline{3} 000=\underline{8} 267 . \\ & \underline{5} 267+\underline{7000} \end{aligned}$	If the thousands do not cross into the ten thousand column then add the thousands only $\underline{5} 267+$ If the thousands cross into the ten thousand column then use knowledge of number bonds to solve. For $\underline{5} 267+7000$ you wouldpartition 7000 into $\underline{5000}$ and 2000 then $5267+5000=$ $10,267+2000=12,267$.
*Add any pair of 3-digit multiples often including crossing boundaries.	$\begin{aligned} & 430+520 \\ & 6 \underline{5} 0+2 \underline{7} 0 \end{aligned}$	If the numbers do not cross into others columns then use partitioning to add $430+520=950$. If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $6 \underline{50}+270$ you partition 270 into 200 and $\underline{50}$ and $\underline{20}$. Then you would do $650+200=850$ then $850+\underline{50}=900$ to make the next multiple of 100 then add $20900+20-=920$.

Year 5
Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more, two more...ten more...., one hundred more, inverse,
commutative lawhow many more to make? How many more is...than...? How much more is...?
Counting Fluency:To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting number. Mental Strategies

Skill	Strategy	
* Add any pairs of 4-digit multiplesof 100.	$\begin{aligned} & 4 \underline{5} 00+3 \underline{2} 00 \\ & 3 \underline{2} 00=7 \underline{7} 00 . \\ & 5 \underline{4} 00+7 \underline{9} 00 \end{aligned}$	If the hundreds and thousands column do not cross into other columns then partition to add $4 \underline{500}+$ If the hundreds and thousands column cross then use knowledge of number bonds to solve. For $5 \underline{4} 00+7 \underline{9} 00$ you add $5000+7000=12,000$ and $\underline{9} 00+\underline{400}=\underline{13} 00$ and recombine $12,000+1300=$ 13,300.
*add near multiples of 10 , $100,1000,10,000$ then adjust, including crossing boundaries.	$\begin{aligned} & 2335+\underline{58} \\ & 2345+297 \\ & 5438+3995 \end{aligned}$	Add the nearest multiple of 10 (60) then subtract 2 because 60 is two more than 58 $2335 \underline{+60}=2395-2=2393$ Add the nearest multiple of 100 (300) then subtract 3 because 300 is three more than 297 $2345+300=2645-3=2642$ Add the nearest multiple of 1000 (4000) then subtract 5 because 4000 is five more than 3995 $5438+4000=9438-5=9433 .$
*Add tenths to a 1digit wholenumber and tenths.	$\begin{aligned} & 4.3+0.4 \\ & 2 . \underline{4}+0.8 \end{aligned}$	If the tenths do not cross into ones column then add the tenths and ones separately $4 . \underline{3}+0.4=4.7$ If the tenths cross into the ones column then use your knowledge of number bonds to partition. For $2.4+0.8$, use your knowledge that $4+\underline{6}=10$ to partition the 0.8 into $0 . \underline{6}$ and 0.2 so $2 . \underline{4}+0 . \underline{6}=3+0.2=$ 3.2
*Add two 1-digit whole numbers andtenths.	$\begin{aligned} & 4.3+3.4 \\ & 6.7+1.5 \end{aligned}$	If the tenths do not cross into ones then add the tenths and ones separately e.g. 4.3+3.4=7.7 If the tenths cross into the ones column then use your knowledge of place value to solve. Make both numbers ten times bigger then calculate $67+15=82$. To adjust make your answer $\underline{10 \text { times smaller } 82 \div}$ $10=8.2$ so $6.7+1.5=8.2$
*Add 2-digit numbers with tenthsand hundredths.	$\begin{aligned} & 0.46+0.21 \\ & 0.36+0.84 \end{aligned}$	If the tenths and hundredths do not cross into ones then use partitioning to solve e.g. $0.46+0.21=0.67$ If the tenths and/or hundredths cross into another column then use your knowledge of place value to solve. Make both numbers 100 timesbigger then calculate $36+84=120$. To adjust make your answer 100 times smaller $120 \div 10=1.2$ so $0.36+0.84=1.20$

$\begin{aligned} & \text { n } \\ & \text { 亏े } \\ & \text { 义 } \end{aligned}$	To add numbers with morethan 4 digits.	Modelled using place value counters Children to understand that the highest amount in eachcolumn is 9 so sometimes exchange into the next columnis necessary. Children understand that they can exchange ten 1 s for a ten, ten 10s for a hundred, ten 100s for a thousand, ten 1000s for a ten thousand. Children understand multi exchange where exchange isneeded in more than one column. $52,546+34,375=86,921$	Using different pictorial representations for the values, the childrenshow exchanges and understand the place value. This leads to greaterunderstanding when using the formal written method as the children know what the digit below the line represents.	Record as a written calculation Condensed columnar addition Carry below the line. Children to solve calculation involving multipleexchanges.

Year 6

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more, two more...ten more...., one hundred more, inverse, commutative law, how many more to make? How many more is...than...? How much more is...?

Counting Fluency:To consolidate counting backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$ and 10,000 s from any starting number.

Mental Strategies

Skill	Strategy	
Reconsolidate all strategies from Year 4 and 5		
*Add a 4-digit multiple of 100 to a 4-digitnumber.	$\begin{aligned} & 6365+3400 \\ & 5432+1800 \end{aligned}$	If the hundreds do not cross into the thousands column then add the hundreds only $6365+3400$ $=9765$. If the hundreds cross into the thousands column then use knowledge of place value to partition. For $5 \underline{4} 32+1800$ you partition 1800 into 1000 and 600 and 200 . Then you would do $5432+1000=6432$ then $6432+\underline{600}=7032+200=7232$.
*Add large numbers.	$455,000+324,000$ If the hundreds and thousands do not cross into the thousands column then use partitioning to solve $455,000+324,000=879,000$ $543,000+387,000$ If the hundreds, thousands or ten thousands cross into another column then use knowledge of place value to partition. $\begin{aligned} & \text { For } 543,000+387,000 \text { you would do } 500,000+300,000=800,000 \text { then } 40,000+80,000= \\ & 120,000 \text { and } 3,000+7,000=10,000 \\ & \text { and recombine } 800,000+120,000+10,000=930,000 \end{aligned}$	
*add near multiples of 0.01 , $0.1,10,100,1000$ then adjust, including crossing boundaries.	$\begin{aligned} & \underline{3.9}+4.4 \\ & 2.56+\underline{4.98} \end{aligned}$	Add the nearest whole number (4) then subtract 0.1 because 4 is actually 0.1 more than 3.9 so $4.4+\underline{4}=8.4-\underline{0.1}=8.3$ Add the nearest whole number (5) then subtract 0.02 because 5 is actually 0.02 more than 4.98 so $2.56+5=7.56-0.02=7.54$
*Add several 1-digit whole numbers andtenth.	$\begin{aligned} & 3.4+2.8+ \\ & 3.5 \end{aligned}$	Use knowledge of place value and partitioning to solve. Make each decimal fractions 10 times bigger and do $34+28+35=97$ Then adjust to make your answer 10 times smaller $97 \div 10=$ 9.7 so $3.4+2.8+3.5=9.7$

*Add decimals with different numbers ofplaces.	0.45 + 2.3	Add by partitioning using your knowledge of place value. First add the ones $0+2=2$, then the tenths $0.4+0.3=0.7$ then thehundredths $0.05+0=0.05$ and recombine $2+0.7+0.05=2.75$	
*Add to any number with two decimal placesto make the next tenth or whole number.	$\begin{aligned} & 2.34+?=2.4 \\ & 6.35+?=7 \end{aligned}$	Use knowledge of number bonds to 10. Use knowledge of number bonds to 100.	$\begin{aligned} & 3 \underline{4}+\underline{6}=40 \text { so } 2.34+0 . \underline{6}=2.4 \\ & \underline{35}+\underline{65}=100 \text { so } 6 . \underline{35}+0.65=7 \end{aligned}$
*Add to any number with three decimalplaces to make the next tenth or whole.	$\begin{aligned} & 4.245+?=5 \\ & 3.256+?= \\ & 3.3 \end{aligned}$	Use knowledge of place value to help Use knowledge of place value	$\begin{aligned} & \underline{245}+\underline{755}=1000 \text { so } 4.245+0.755=5 \\ & 256+\underline{44}=300 \text { so } 3.256+0.044=3.3 \end{aligned}$

Year 6 Calculation Methods

To add numbers with increasing complexity, including adding money, measure.	Use physical obj increasing comple money, measure Using counters a $1.30+80.79=$	cts to add nu xity, including 32.09	mbers with adding lue chart hundredths 8888	Use pictorial representations to add numbers with increasing complexity, including adding money, measure Using jottings and place value chart. Children will use jottings to help them represent the calculation. They add each column starting first from the furthest column to the right and carry below the line when needed. $2.37+81.79=84.16$	Children add several decimals with differentnumbers of decimal places by lining up digitsand inserting zeros as place holders.

