St Teresa's Catholic Primary School Division Calculation Policy

Respect - Resilience - Read - Retain

'Do the little things well'

EYFS

Key Vocabulary: sharing, halving, number patterns

	Objective and Strategies	Concrete	Pictorial	Abstract
$\frac{\sim}{\underset{\sim}{x}}$	To begin to divide by sharing.	Children will use a range of resources to share concrete resourcesto begin to demonstrate understanding.	Children will understand equal groups and share items out in playand problem solving. They will count in 2 s and 10 s and later in 5 s .	Children will begin to experiment with writing divisionnumber sentences using the division symbol.
		Children will start with an even number and will need to share thisout equally in a given group. e.g. $10 \div 2=5$	Step 1: Count how many you have. Step 2: Share them equally so each group has the same amount. Step 3: Count how many are in each group.	$10 \div 2=5$

Key Vocabulary: division, dividing, grouping, sharing, doubling, halving, array, number pattern, equal grouping, equal sharing

Objective and Strategies	Concrete	Pictorial	Abstract
To divide by sharing To half a number up to 20 .	Children will use concrete resources, including uni-fix cubesto share into equal groups. Children will also be able to half a number up to 20 by sharing into equal groups. Stem Sentence: I know there are $\underline{\mathbf{2}}$ groups so I can share. 12 counters which will equal 6 in each group.	Children will draw jottings and have pictorial representations todemonstrate knowledge of sharing into equal groups. $12 \div 2=6$ I know there are $\mathbf{2}$ groups and in each group there are 6 flowers. $12 \div 2=6$	Children will be introduced to word problems to solve division problems. 6 sweets are shared between 2 people. How many do they have each? $12 \div 2=6$ Stem Sentence: I know 12 dividedequally between $\underline{\mathbf{2}}$ groups' equals $\underline{6}$.
To divide by grouping.	Children will begin to solve division problems, which requiresorting objects and quantities into $2 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . Children will use concrete resources such as cubes, counters or objects to aid understanding.	Children will use number lines to show grouping. $10 \div 2=5$	There are 10 flower bulbs. Plant 2 ineach pot. How many pots are there? $10 \div 2=5$

Year 2dition, add, more

Key Vocabulary: multiplication, multiply, multiplied by, multiple, grouping, doubling, array, row, column, groups of, times once, twice, three times ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact tens.

Objective and Strategies	Concrete	Pictorial	Abstract

| To divide by |
| :--- | :--- |
| sharing. | | Children will use a range of concrete |
| :--- |
| resources, includingcubes to share objects |
| and quantities into equal groups. | | Children will use pictures and shapes to share quantities. |
| :--- |
| $12 \div 3=4$ | | Children will be writing |
| :--- |
| division numbersentence |
| using the divide symbol. |

Year 3

Key Vocabulary: groups of times, repeated addition, division, dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ...ten each group in pairs, threes ... tens equal groups of, halving, array row, column, number patterns, division fact

	Objective and Strategies	Concrete	Pictorial	Abstract
m	Children continue to deepen their understanding of the linkbetween multiplication and division and use physical objectsto find related facts.	Children represent an array pictorially then findthe associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and divisionstatements.	
$\bar{\tau}$				

To recall multiplicatio n and division facts for multiplicatio n tables up to 12 x 12 .	$\begin{array}{ll} 3 \times 6=18 & 18 \div 3=6 \\ 6 \times 3=18 & 18 \div 6=3 \end{array}$	$18 \div 3=6$ $18 \div 6=3$ $3 \times 6=18$ $6 \times 3=18$	$\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know whateach number represents in the calculation.
To using grouping to divide (repeated addition)	Children will use concrete resources, including place valuecounters to divide by grouping. $96 \div 8=12$ Step 1: Use place value counters to create the dividend. Step 2: Look at the divisor, this explains the number ofgroups you will need. E.g. 8. The children will need to	Children will continue to use repeated additionon the number line but will work with increasingly large numbers. $96 \div 8=12$ Children will count on from in 8 s from 0 untilthey reach 96 . Children will also continue to use the bar modelto support their understanding. \square \square \square \square \square \square	There are 96 footballs. Each player needs 8 footballs. How many players are there? $96 \div 8=12$ There are 96 footballs. Each player needs 12 footballs. How many players are there? $96 \div 12=8$

	exchange 1 ten for 10 ones. Step 3: Children will need to share out the remainingnumber so each group is equal.		How many groups 8 are in 96? How many groups of 12 are in 96?
To use arrays to divide.	Children will link division to multiplication by using arrays. They will begin writing numbers sentences to show what they can create. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$	Children will draw or be given a pictorial representation of an array. They will circle thearray to split it into groups to make multiplication and division sentences. $24 \div 6=4$ STEM:I know 24 - $6=4$ because 6 groups of 4 equals 24	Children will find the inverse of multiplication and division sentences by creating linking number sentences. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \\ & 24 \div 6=4 \\ & 24 \div 4=6 \end{aligned}$

Year 4

Key Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array.

Ј 广̇ ¢	To recall multiplication and division facts for multiplication tables up to 12x 12.	Children continue to deepen their understanding of thelink between multiplication and division and use physical objects to find related facts. $\begin{aligned} & 3 \times 6=18 \\ & 18 \div 6=3 \end{aligned}$	Children represent an array pictorially then find the associated multiplication and division facts by sortinginto equal groups. $18 \div 3=6$ $3 \times 6=18$ $18 \div 6=3$ $6 \times 3=18$	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and knowwhat each number represents in the calculation.

To use a formal written method of short division (bus stop method).

2/ 3 digit $\div 1$ digitnumber (exact answers- no remainders)

2 or 3 digit

 divided bya 1 digit number (simple remainders)Children represent division calculations using concretematerials such as base 10 and place value counters.

The children partition the dividend and put inside thebus stop then divide each part by the divisor. The quotient is then recorded on the top line.

They begin to explore calculations involving simpleremainders.

98 $\div 3$ = $\mathbf{3 2 ~ r 2 ~}$

Children represent division calculations using informaljottings and pictorial representations.

$2 \underbrace{0}_{90 \div 3} 0$

They begin to explore calculations involving simpleremainders.
$98 \div 3=32$ r2

In Year 4 children divide numbers up to 3 digits by a1 digit numbers with exact answers.

The children are introduced to the bus stop methodas a formal written method.
$96 \div 3=32$

Once children have a secure understanding, they begin to understand how to record calculations with simple remainders.
$98 \div 3=32$ r2

			Children apply their knowledge of division to wordproblems. Arron has 77 seeds. He plants 4 seeds in each plantpot. How many pots does he need?
Year 5			
Keu Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array, prime numbers, composite numbered to be able to confidently count in steps of $2,3,4,5,6,7,8,9,10,11$ and 12 Counting Fluency: To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting number.			
Objective and Strategies	Concrete	Pictorial	Abstract

To recognise and use factor pairs ofa number and find common factors oftwo numbers.

Children use physical objects to create arrays to support their understanding of factors.

Find the common factors of 18 and 24

Factors of 24 Factors of 18

The common factors are $1,2,3$ and 6 .

Children investigate finding factors by drawing arrays tofind all solutions. They then find factors which belong toboth numbers.

Find the common factors of 18 and

 24Factors of 24

Factors of 18

The common factors are $1,2,3$ and 6 .

Children use multiplication and division facts to find factors of numbers.

Find the common factors of 18 and 24

Factors of $18 \quad$ Factors of 24

The common factors are 1 , 2, 3 and 6.

This three-digit number has 2 and 7 as factors.

Write another three-digit number which has 2 and 7 as factors.
\square

Key Vocabulary: factors, multiples, groups of, share, share equally, equal groups, division, divide, divided by, divided into, left, left over, remainder, array.

$\begin{aligned} & \text { o } \\ & \text { ঠे } \\ & \underset{\sim}{\sim} \end{aligned}$	To recall multiplication and division facts for multiplication tables up to 12x 12.	Children continue to deepen their understanding of thelink between multiplication and division and use physicalobjects to find related facts. $\begin{aligned} & 3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=18 \quad 18 \\ & \div 6=3 \end{aligned}$	Children represent an array pictorially then find the associated multiplication and division facts by sortinginto equal groups.	Children apply their understanding of inverse relationships to write related multiplication anddivision statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and knowwhat each number represents in the calculation.

To establish whether a number up to 100 is prime and recall prime numbers up to 19.	Children find prime numbers and composite (non-prime numbers) by using arrays. They understand that composite numbers form arrays and prime numbers cannot be arrangedinto arrays.	Children use jottings and pictorial representations toinvestigate composite and prime numbers.	Children use their knowledge of multiples and factors to find the prime numbers up to 100.They eliminate numbers that have factors other than 1.They can recall allprime numbers up to 19 .

Children represent division calculations using concretematerials such as base 10 and place value counters.

To use a formal written method of short division
(bus stop method).

Larger

numbers
$\div 1$ digit
number
(involving remainders)

$98 \div 7=14$

The children partition the dividend and put inside the busstop then divide each part by the divisor. The quotient is then recorded on the top line. The children work with numbers that involve remainders.

$432 \div 5=86$ r2

Children represent division calculations using informaljottings and pictorial representations. The children will recognise remainders.

$98 \div 7=14$

In Year 6 children divide larger numbers by a 1 digit numberwith calculations involving remainders. The children continueto use the bus stop method as a formal method of written calculation.
$98 \div 7$ becomes

$$
\begin{gathered}
14 \\
7 \longdiv { 9 \quad 8 }
\end{gathered}
$$

Answer: 14

$$
432 \div 5 \text { becomes }
$$

Answer: 86 remainder 2
Children are expected to interpret non-integar answers byexpressing results as fractions ($432 \div 5=86 \frac{2}{5}$), decimals ($432 \div 5=86.4$) or by rounding ($432 \div 5=$ $86.4 \approx 86$ sweets) according to the context.

Children apply their knowledge using word problems and number puzzles.

			Write the missing number in each calculation. $25 \div \square=$ $=3$ remainder 4 Write the missing number. $70 \div \square=3.5$

To use a

formalwritten method of long division (bus stop method).

Divide larger

 numbers $\div 2$digit numbers
(involving remainders)

Children represent division calculations using concretematerials such as base 10 and place value counters.

The children partition the dividend and put inside the busstop then divide each part by the divisor. The quotient is then recorded on the top line.

Children represent division calculations using informaljottings and pictorial representations.

The children use the bus stop method as a formal method of written calculation. They use their understanding of the pictorial and concrete stages to understand the value of eachnumber.
$432 \div 15=28$ r 12.

Step one: Children will put the calculation into the bus stop grid and list their multiples of the divisor.

$432 \div 15$	
	15
$1 5 \longdiv { 4 3 2 }$	
	6
	15
	90
	105
	120
	135
	159

Step 2: Start with the hundreds. The divisor doesn't divide into 4 so combine the 4 hundred with the 3 tens (430). Use the multiples of 15 to calculate the nearest multiple. Two x 15 is 30 . Record this underneath, put the 2 on the top then subtract.

