St Teresa's Catholic Primary School Multiplication Subtraction Policy

Respect - Resilience - Read - Retain

'Do the little things well'

EYFS

Key Vocabulary: multiplication, multiply, multiplied by, multiple, grouping, doubling, array
Times Tables: To count in steps of 2 s and 10 s and begin to count in 5 s .

	Objective and Strategies	Concrete	Pictorial	Abstract
$\underset{\sim}{\underset{\sim}{\sim}}$	To count in steps of 2 s and 10 s and begin to count in steps of 5.	Children will count in steps of 2 s and 10s. They will begin to count in 5 s .	Children will verbally say their number sequence aloud to demonstrate their understanding.	$\begin{array}{r} 2,4,6,8 \ldots \\ 10,20,30,40 \ldots \\ 5,10,15,20,25,30 \ldots \end{array}$
	To be able to double numbers.	Using practical activities using manipulative including uni-fix cubes to demonstrate doubling.	Children will begin to draw pictures to demonstrate doubling. Double 1 equals 2 .	$1+1=2$ Stem Sentence: Double 1 equals $\underline{2}$

To experience equal groups of objects.	Children will experience equal groups of objects. Children will be encouraged to count the groups, then count how many objects are in a group. $\text { E.g. } 2 \times 4=$	Children will have images of equal groups to solve multiplication sentences by counting how many are in each equal group.	$2 \times 4=8$ Stem Sentence: I know there are $\underline{\mathbf{2}}$ groups with $\underline{\mathbf{4}}$ in each group.
Year 1			
Objective and Strategies	Concrete	Pictorial	Abstract
To count in steps of 2, 5 and 10s.	Children will be able to use concrete resources to count in steps of 2,5 and 10 .	Children will verbally say their number sequence aloud to demonstrate their understanding. Children would begin to count aloud and write numbers to match the sequence. E.g. $0,5,10$,	Children will be able to count aloud in sequences, starting at different points. Children will be able to write sequences with multiples of numbers $2,4,6,8$... $\begin{array}{r} 10,20,30,40 \ldots \\ 5,10,15,20,25,30 \ldots \end{array}$

To make equal groups and count the total.	Children will use concrete resources to make equal groups. Stem Sentence: I know there are $\underline{\mathbf{2}}$ groups with $\underline{\mathbf{6}}$ in each group.	Children will draw jottings and have pictorial representations to demonstrate knowledge of equal groups. I know there are $\mathbf{2}$ groups and in each group there are 6 flowers.	$2 \times 6=12$ Stem Sentence: I know there are $\mathbf{2}$ groups with $\underline{\mathbf{6}}$ in each group.
To understand multiplication as repeated addition.	Children will be able to use a range of concrete resources to add equal groups.	Children will use pictorial representations, including the use of a number line to solve problems. There are 3 sweets in 1 bag. How many sweets are in 5 bags altogether? 3. $+3 .+3 .+3+3=15$	Children will be able to write addition number sentences to describe pictures or objects. $3+3+3+3+3=15$

Year 2dition, add, more
Key Vocabulary: multiplication, multiply, multiplied by, multiple, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact.
Times Tables: children in Year 2 need to count in steps of 2, 3, 5 and 10 s.w many fewer is...than...? How much lessis...? tens boundary, minuend, subtrahend, difference.

Objective and Strategies	Concrete	Pictorial	Abstract
To double numbers up to 100.	Model using base 10 to partition a number and then double the ones and the tens.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining back together.
\sim			

To show that multiplicatio n is commutative	Children will create arrays using a variety of concrete resources, including cubes and counters. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer $4 \times 3=12$ $3 \times 4=12$	Children will use a range of pictures to represent arrays to show different calculations and show commutativity. $4 \times 3=12$ $3 \times 4=12$	Children will write the different multiplication sentences to show the commutative law. $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Children will also be able to use an array to write multiplication number sentences and reinforce repeated addition. $\begin{aligned} & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$

To use related multiplicatio n and division facts using the inverse for the $2,3,5$ and 10 times table. This will be taught alongside division to show how the numbers relate and build fluency.	Children will use concrete resources, including cubes to represent arrays. These will then form part of the learning process to explain number related facts and begin to write these in number form. $\begin{array}{ll} 2 \times 4=8 & 4 \times 2=8 \\ 8 \div 2=4 & 8 \div 4=2 \end{array}$	Children will use pictorial representations to solve missing number facts that demonstrate related facts.	Children will show all 8 related number sentences to demonstrate related facts. $\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$

Year 3

Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition,
one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact.
Times tables- Children in Year 3 need to be able to confidently count in steps of 2, 3, 4, 5, 8, 10, 50 and 100.

	Objective and Strategies	Concrete	Pictorial	Abstract
	To use related multiplicatio n and division facts using the inverse for the $2,3,4$, 5,8 and 10 times table.	Children understand the link between multiplication and division and use physical objects to find related facts. $\begin{array}{ll} 3 \times 6=18 & 18 \div 3=6 \\ 6 \times 3=18 & 18 \div 6=3 \end{array}$	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.
$\begin{aligned} & \text { m } \\ & \vdots \\ & \vdots \\ & \end{aligned}$	To use a formal written method of multiplicatio n (grid method).	Children use partitioning to multiply numbers using the grid method. They partition the multiplicand and multiply each part by the multiplier. Children use base ten and place value counters to represent arrays of the partitioned number. $24 \times 3=72$	Children show their understanding by represent the calculation in the grid using their own pictorial representation.	Formal Method The children use the grid method for larger numbers. They multiply numbers by first partitioning the multiplicand and then multiplying each part by the multiplier. In year 3 children are expected to multiply 2 digit by a 1 digit number.

2-digit x 1 digit number	Use of place value counters finding the total	$24 \times 3=72$ $\begin{aligned} & 24 \times 3 \\ & 20 \times 3=60 \\ & 4 \times 3=12 \\ & \\ & \\ & \\ & \\ & \\ & +\frac{120}{72} \end{aligned}$ Children use jottings to partition the multiplicand and multiply each part by the multiplier.	$24 \times 3=72$$X$ 20 4 3 60 12 Children apply their knowledge of multiplication to word problems. There are 5 balloons in a packet. There are 18 packets in a box. How many balloons are there altogether in a box?
one each, two each, three each...ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed, distributive law. Times tables- Children in Year 4 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.			
Objective and Strategies	Concrete	Pictorial	Abstract

Ј \vdots \searrow	To recall multiplication and division facts for multiplication tables up to 12x 12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts. $\begin{array}{ll} 3 \times 6=18 & 18 \div 3=6 \\ 6 \times 3=18 & 18 \div 6=3 \end{array}$	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}$ They use associated vocabulary correctly and know what each number represents in the calculation.

Children represent the calculation by drawing pictorial representations. They partition the multiplicand then multiply each part by the multiplier.

$327 \times 4=1308$

Children understand the place value and can exchange between columns which leads to the formal condensed method.

$327 \times 4=1308$

Formal Method

In year 4 children are expected to multiply a 3-digit by a 1 digit number.

Children apply their

 knowledge of the grid method begin to record in a columnar form. At this stage they still partition the multiplicand and multiply each part by the multiplier.Children then move on to using the condensed method of short multiplication. They carry below the line.

327

n.

1200
1308

Year 5

Keu Vocabularu: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication
fact, inverse, square, squared, cube, cubed, distributive law.
Times tables- Children in Year 5 need to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 Counting Fluency: To count backwards and forwards in steps of $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s from any given starting numb

Objective and Strategies	Concrete	Pictorial	Abstract

To use a formal written method of multiplication (short multiplication). Up to 4-digit x 1 digit number	Children represent calculations using the place value counters and base ten equipment. They solve in a columnar form and begin by multiplying the ones, then the tens then the hundreds then the thousands before finding the total. $2741 \times 6=16,446$ $\begin{aligned} & 1 \times 6=6 \\ & 40 \times 6=240 \\ & 700 \times 6=4,200 \\ & 2000 \times 6= \\ & 12,000 \end{aligned}$	Children represent the calculation by drawing pictorial representations. They partition the multiplicand then multiply each part by the multiplier They understand the place value and can confidently exchange between columns. This leads to the condensed method.	Formal Method In year 5 children are expected to multiply numbers up to a 4-digit by a 1 digit number. The children continue to use the condensed method of short multiplication but with larger numbers. The number is carried underneath between columns.

To recognise and use square numbers and cube numbers.

Children use resources to explore squared and cubed numbers.

Square numbers

4
9
16

Cubed numbers

Children represent squared and cubed numbers pictorially. They use the correct notation for squared (2) and cubed (3).

Children can find and recognise squared and cubed numbers and use the correct notation for squared (2) and cubed (3).

$$
2^{2} \text { or } 2 \times 2=4
$$

$$
3^{2} \text { or } 3 \times 3=9
$$

$$
4^{2} \text { or } 4 \times 4=16
$$

$$
\begin{aligned}
& 1^{3}=1 \times 1 \times 1=1 \\
& 2^{3}=2 \times 2 \times 2=8 \\
& 3^{3}=3 \times 3 \times 3=27 \\
& 4^{3}=4 \times 4 \times 4=64
\end{aligned}
$$

Year 6

Key Vocabulary: multiplication, multiply, multiplied by, multiple, factor, product, grouping, doubling, array, row, column, groups of, times once, twice, three times ... ten times, repeated addition, one each, two each, three each ... ten each, equal groups of, multiplication table, multiplication fact, inverse, square, squared, cube, cubed.

Times tables-children in Year 4 needs to be able to confidently count in steps of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

$\begin{aligned} & \text { o } \\ & \text { ঠ̀ } \\ & \underset{\sim}{0} \end{aligned}$	To recall multiplication and division facts for multiplication tables up to 12x 12.	Children continue to deepen their understanding of the link between multiplication and division and use physical objects to find related facts. $\begin{aligned} & 3 \times 6=18 \quad 18 \div 3=6 \quad 6 \times 3=1818 \div 6 \\ & =3 \end{aligned}$	Children represent an array pictorially then find the associated multiplication and division facts by sorting into equal groups.	Children apply their understanding of inverse relationships to write related multiplication and division statements. $\left\lvert\, \begin{array}{ll} 3 \times 6=18 & 18=3 \times 6 \\ 6 \times 3=18 & 18=6 \times 3 \\ 18 \div 3=6 & 6=18 \div 3 \\ 18 \div 6=3 & 3=18 \div 6 \end{array}\right.$ They use associated vocabulary correctly and know what each number represents in the calculation.

To use a
formal
written
method of
multiplication
(long
multiplication)

Children represent calculations using the place value counters using the grid method.

Multi-digit x 2 digit number

Children will first use their knowledge of place value to partition the multiplicand and multiplier. They then show their understand pictorially in a grid method.

$124 \times 26=3224$

$124 \times 26=3224$

Children then move towards the columnar method by representing each stage with jottings. Children are encouraged to multiply the ones first.

In year 6 children are expected to multiply multi digit numbers by a 2 digit number. The children are introduced to long multiplication. The number is carried underneath.

$124 \times 26=3224$

Step 1:Multiply the multiplier by the multiplicand. Start with the ones, multiply 6 by 4 (24). Write the 4 in the ones column and carry the 20 below the line.

Step 2: Multiply the 6 by 20 (120) and add the 2 (122).

Cross off the carried 20. Write the 4 in the tens column and carry the 100 below the line.

Step 3: Multiply the 6 by 100 (600) and add the

100 (700). Cross off the carried 100. Write the 7 in the hundreds.

Step 4: Move to the tens column on the multiplier and start a new line. Multiply the 20 by 4 (80) and record.

