St Bernadette's Catholic Primary School

Calculations Policy

"Doing our best for God"

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method-no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)

| Division | Sharing objects into
 groups
 Division as grouping | Division as grouping
 Division within
 arrays | Division within
 arrays
 Division with a
 remainder
 Short division (2
 digits by 1 digit-
 concrete and
 pictorial) | Division within
 arrays
 Division with a
 remainder
 Short division (up to
 3 digits by 1 digit-
 concrete and
 pictorial) | Short division
 (up to 4 digits by a 1 1
 interpret remainders
 appropriately for
 the context) | Long division
 (up to 4 digits by a 2
 digit number-
 interpret remainders
 as whole numbers,
 fractions or round) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Addition

Key Vocabulary: sum, total, parts and wholes, plus, add, addition, altogether, more than, equal to, the same as, column, place value, partitioning, order of operations, make, total, double, near-double, increase, inverse.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc.)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or Numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$

Regrouping to make 10 by using ten frames and Children to draw the ten frame and
counters/cubes or using Numicon: $6+5$

counters/cubes

Children to develop an understanding of

```
equality e.g. 6+\square=11 and
```

$6+5=5+$
$6+5=$ \qquad $+4$

TO + O using base 10. Continue to develop understanding of partitioning and place value $41+8$
\|
$41+8$

$1+8=9$
$40+9=49$

Use of place value counters to add HTO + TO, HTO + HTO etc. Once the children have had practice with this, they should be able to apply it to larger numbers and the abstract

Children to represent the counters e.g. like the image below

If the children are completing a word problem, draw a bar model to represent what they are being asked to do.

$?$	
243	368

243
+368
611
11

Fluency variation, different ways to ask children to solve 21+34:

Sam saved $£ 21$ one week and $£ 34$ another. How much did he save in total?	21
21+34=55. Prove it! (Using reasoning but the children need to be fluent in representing this)	$21+34=$
	What's the sum of twenty one and thirty four?

Subtraction

Key Vocabulary: take away, remove, leave, left over, gone, less than, count back, the difference, subtract, minus, fewer, decrease, half/ halve, inverse, order of operations, column method, exchange, place value.

Concrete	Pictorial	Abstract

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used)

Making 10 (using numicon or ten frames) 14-5

Children could also do this by subtracting a 5 from the 10 .

Find the difference between 8 and 6 .
$8-6$, the difference is?
Children to also explore why 9 -
7=8-6 (the difference, of each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)

14-5 = 9 You also want children to see related facts e.g. 15-9=5

Fluency variation, different ways to ask children to solve 391-186:

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Raj spent £391, Timmy } \\ \text { spent £186. How much } \\ \text { more did Raj spend? }\end{array} & 391-186 \\ \text { I had } 391 \text { metres to run. } & \\ \text { After } 186 \text { I stopped. }\end{array}\right)=391-186$

Find the
difference
between
391 and
186.

Subtract
186 from
391.

What is
186 less
than 391?

What's the calculation? What's the answer?

Multiplication

Key Vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal to, the same as, multiple, factor, array, row, column, multiplication.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x X & x x & x X \\ x X & x X & x X \end{array}$ Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line	Abstract number line

| Use arrays to illustrate commutativity
 (counters and other objects can also be
 used)
 $2 \times 5=5 \times 2$ | Children to be able to use an array to
 write a range of calculations e.g. |
| :--- | :--- | :--- |
| $2 \times 5=10$
 $5 \times 2=10$
 $2+2+2+2+2=10$
 $5+5=10$ | |

Partition to multiply (use numicon, base 10, Cuisenaire rods)

Children to represent the concrete manipulatives Children to be encouraged to show the in a picture e.g. base 10 can be represented like:

Formal column method with place value counters or base 10 (at the first stageno exchanging) 3×23

Make 23, 3 times. See how many ones,
then how many tens

Formal column method with place value counters (children need this stage, initially, to understand how the column method works)

Children to represent the counters/base 10, pictorially e.g. the image below.

Children to record what it is they are doing to show understanding
$3 \times 23 \quad 3 \times 20=60$
$3 \times 3=9$
$20360+9=69$
23
$\begin{array}{r} \\ \times \quad 3 \\ \hline 69\end{array}$
69
6×23
$6 \times 3=18$
$6 \times 20=120$
$120+18=138$

Fluency variation, different ways to ask children to solve 6×23 :

23	23	23	23	23	23

Mai had to swim 23 lengths, Find the product of 6 and

6 times a week. How many 23
lengths did she swim in one

week?	$6 \times 23=$
Tom saved 23p three days a	

week?	$6 \times 23=$
Tom saved 23p three days a	

23
$\begin{array}{r}6 \\ \times \\ \hline\end{array}$

With the counters, prove that $6 x$ $23=138$

Why is $6 \times 23=32 \times 6 ?$

What's the calculation? What's the answer?

Division

Key Vocabulary: share, group, divide, divided by, half/halve, equal to, the same as, each, pairs, division, divisor, dividend, share, left over, quotient, inverse, remainder.

Concrete	Pictorial	Abstract

6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	ns This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
2d $\div 1 \mathrm{~d}$ with remainders $13 \div 4$ - 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	13 $\div 4-3$ remainder 1 Children to count their times tables facts in their heads

Use of the 'bus stop method' using grouping and counters. Key language for grouping- how many groups of X can we make with X hundreds'- this can also be done using sharing!
$615 \div 5$

$\begin{gathered} \ominus \ominus \\ \ominus \ominus \\ \ominus \ominus \end{gathered}$		Step 1: Make 615
		Step 2: Circle your groups of 5
$\stackrel{\ominus}{\bullet}$		Step 3: Exchange 1H for 10T and circle groups of 5
$\stackrel{\ominus \ominus}{\ominus}$		Step 4: Exchange 1T for 10ones and circles groups of 5

This can easily be represented pictorially, until the children no longer to do it.
It can also be done to decimal places if you have a remainder!

123
 $5 \longdiv { 6 ^ { \prime \prime } 5 }$

Fluency variation, different ways to ask children to solve $615 \div 5$:

Using the part whole model below, how can you divide 615 by 5 without using the 'bus stop' method?

I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

What's the calculation? What's the answer?

Long division

| | Concrete | Pictorial | |
| :--- | :--- | :--- | :--- | :--- |

 hundreds? 2 groups.
Circle them. We have grouped 24
hundreds so can take them off and we are left with one.

Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2.

Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2

Signed: J. Greenhalgh (Mathematics Coordinator)
Date- October 2023
Review Date: October 2025

