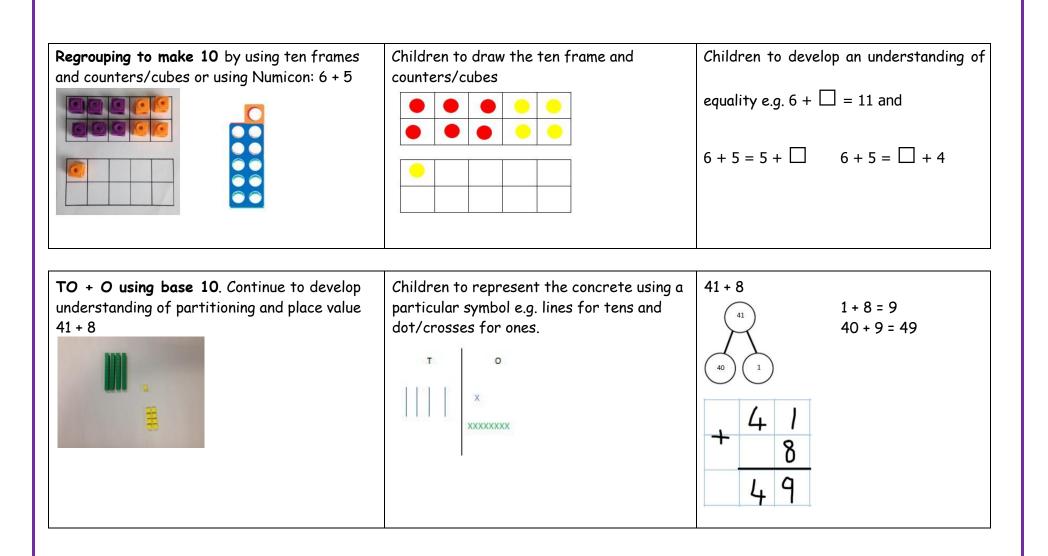
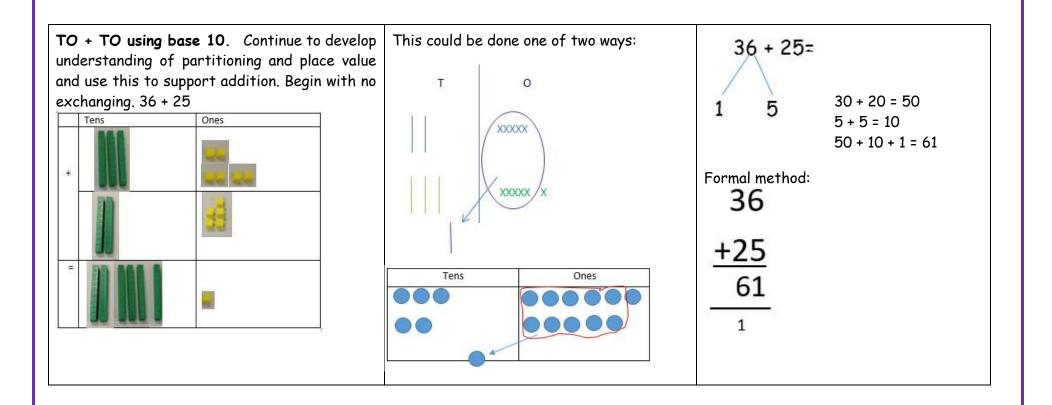
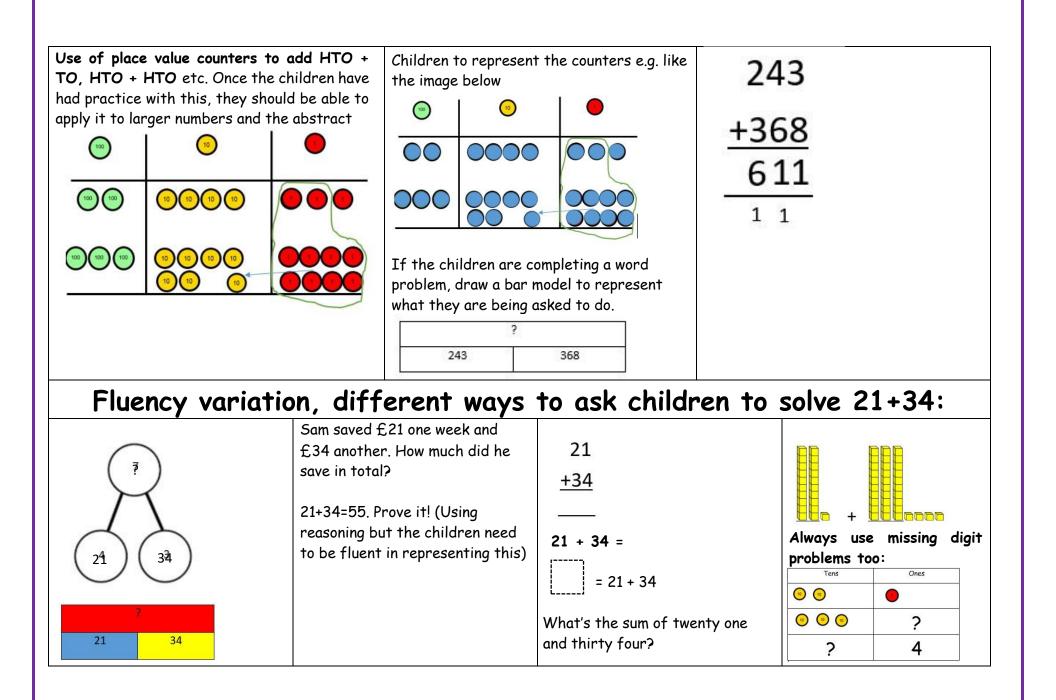
St Bernadette's Catholic Primary School

Calculations Policy

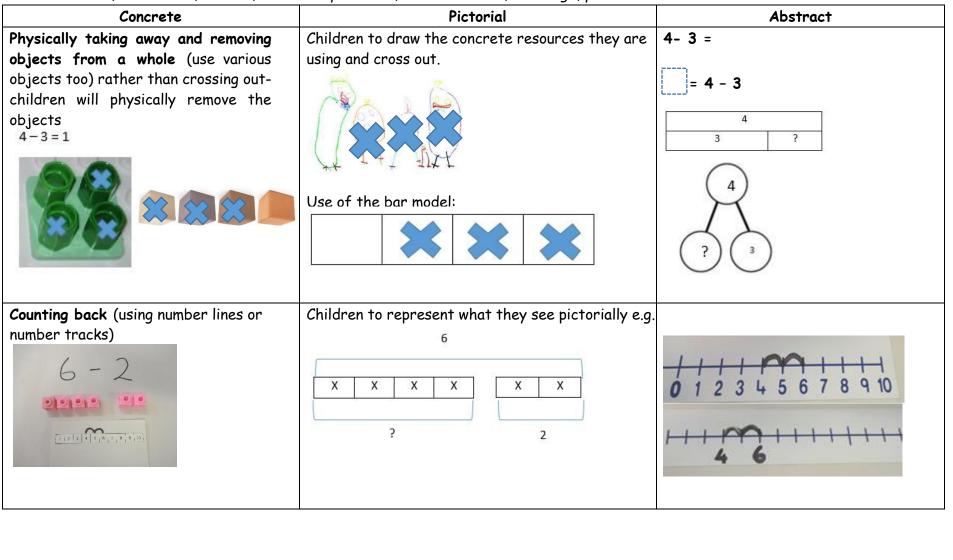

"Doing our best for God"

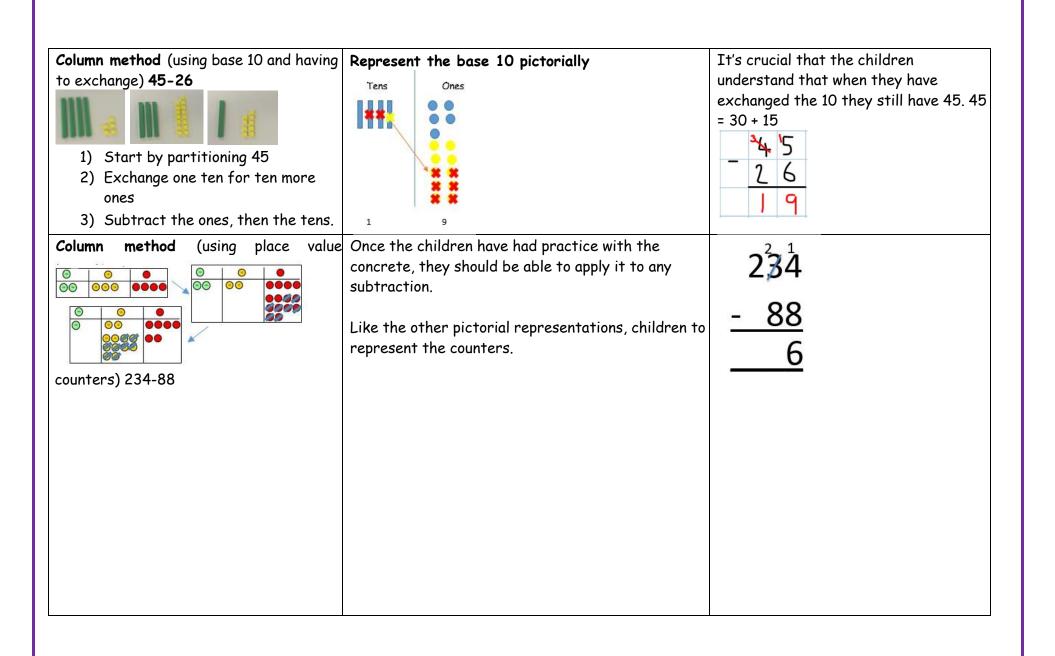

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method – no regrouping.	Column method- regrouping. (up to 3 digits)	Column method- regrouping. (up to 4 digits)	Column method- regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method- regrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method- no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)


<u>Addition</u>

Key Vocabulary: sum, total, parts and wholes, plus, add, addition, altogether, more than, equal to, the same as, column, place value, partitioning, order of operations, make, total, double, near-double, increase, inverse.

Concrete	Pictorial	Abstract	
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc.)		4 + 3 = 7 (four is a part, 3 is a part and the whole is seven)	
Counting on using number lines by using cubes or Numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4? What's the total of 4 and 2? 4 + 2	

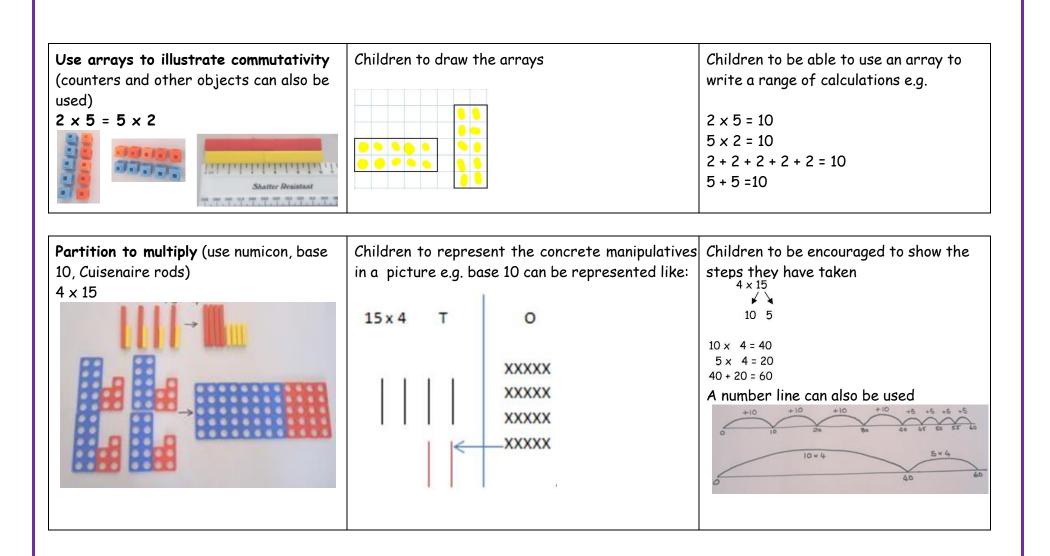




Subtraction

Key Vocabulary: take away, remove, leave, left over, gone, less than, count back, the difference, subtract, minus, fewer, decrease, half/ halve, inverse, order of operations, column method, exchange, place value.

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used)	Children to draw the cubes/other concrete objects which they have used XXXXXXXX XXXXXX	Find the difference between 8 and 6. 8 - 6, the difference is? Children to also explore why 9 - 7 = 8 - 6 (the difference, of
	Use of the bar model	each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)
Making 10 (using numicon or ten frames) 14 - 5	Children to present the ten frame pictorially	14 - 5 = 9 You also want children to see related facts e.g. 15 - 9 = 5 Children to represent how they have solved it e.g. 14 - 5 = 9 14 is made up of 5, 5 and 4 so I can subtract one 5 to be left with 5 5 4 and 5
Column method (using base 10) 48-7		14 - 5 = 9 4 5 is made up of 4 and 1 so I can subtract 4 to make 10 and then 1 to get to 9 48 - 7 =
	т о 	4 8 - 7 4 1

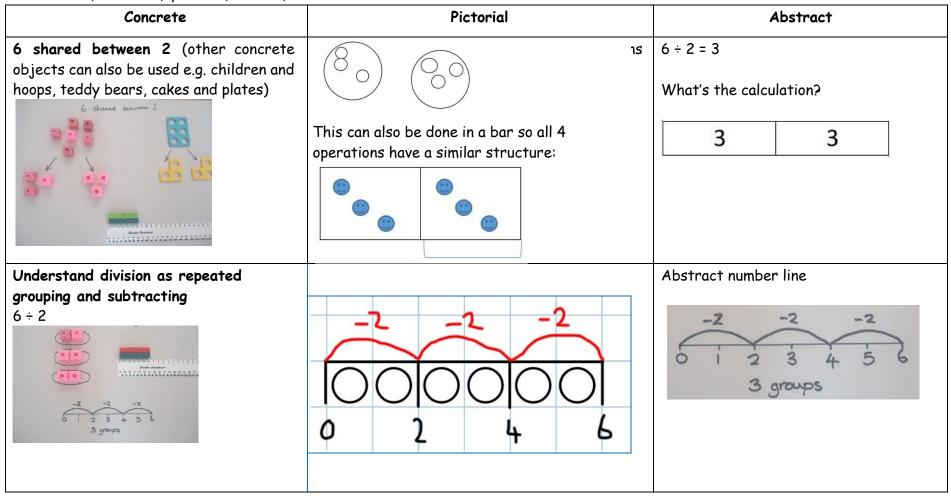


Fluency variatio	n, different w	ays to ask child	dren to solve 391-186:
	Raj spent £391, Timmy	391-186	What's the calculation? What's the
391 391 186 2	spent £186. How much more did Raj spend? I had 391 metres to run. After 186 I stopped. How many metres do I have left to run?	= 391 - 186	

Multiplication

Key Vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal to, the same as, multiple, factor, array, row, column, multiplication.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes)	Children to represent the practical resources in a picture e.g.	3 × 4
3 x 4 or 3 lots of 4	xx xx xx	4 + 4 + 4
	XX XX XX Use of a bar model for a more structured	
	method	
Use number lines to show repeated	Represent this pictorially alongside a number line	Abstract number line
groups- 3 × 4	e.g:	3 × 4 = 12
	0 4 8 12	0 4 8 12


Formal column method with place value counters or base 10 (at the first stage-	Children to represent the counters in a pictorial way	Children to record what it is they are doing to show understanding	
no exchanging) 3 x 23 Make 23, 3 times. See how many ones, then how many tens	Tens Ones Image: Ima	$3 \times 23 \qquad 3 \times 20 = 60 \\ 3 \times 3 = 9 \\ 20 \qquad 3 \qquad 60 + 9 = 69 \\ 23 \\ \frac{\times 3}{69} \\ \hline 69 \\ \hline \end{array}$	
Formal column method with place value counters (children need this stage, initially, to understand how the column method works)	Children to represent the counters/base 10, pictorially e.g. the image below.	6 x 23 6 x 3 = 18 6 x 20 = 120 120 + 18 = 138	

x 23	Hundreds Tens	Ones	The aim is	to get to	the	formal method
• • • • • • • • • • • • • • • • • • •	1 • •		but the ch	ildren nee		understand
		•••	how it wor	ks.		
Step 2 : 6 x 3 is 18. Can I						
make an exchange? Yes!		· · · /	6 x 2	23 =		
Ten ones for one ten						
				23		
Step 3 : 6 x 2 tens and my extra ten is 13 tens. Can I						
make an exchange? Yes! Ten			×	6		
tens for one hundred			1	.38		
				.50		
• Step 4- what do I have I each column?			1	. 1		
/hen children start to multiply 3d × 3d an	d 4d x 2d etc, they sh	ould be confident wi	th the abstract:	1	2	4
				×	2	6
o get 744 children have solved 6 x 124 o get 2480 they have solved 20 x 124				_ 7	4	4
o get 2400 they have solved 20 x 124				2 -4	2 8	0
			8	2 7	0	-
				3 2	2	4
				1 1		
				Answ	er:	3224

Fluency variation	on, different wa	ays to ask childr	ren to solve 6 x 23:
23 23 23 23 23 23 23 ? With the counters, prove that 6 x 23 = 138	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? Tom saved 23p three days a week. How much did he save in 2 weeks?	Find the product of 6 and 23 $6 \times 23 =$ $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	What's the calculation? What's the answer?
Why is 6 x 23 = 32 x 6?			

<u>Division</u>

Key Vocabulary: share, group, divide, divided by, half/halve, equal to, the same as, each, pairs, division, divisor, dividend, share, left over, quotient, inverse, remainder.

2d ÷ 1d with remainders 13 ÷ 4 – 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	13 ÷ 4 – 3 remainder 1 Children to count their times tables facts in their heads
Use of lollipop sticks to form wholes Use of Cuisenaire rods and rulers (using repeated subtraction)		
2d divided by 1d using base 10 (no remainders) SHARING 48 ÷ 4 = 12 Start with the tens.	Children to represent the base 10 an sharing pictorially.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

bharing using place value counters. 42 ÷ 3= 14		42 ÷ 3
 I. Make 42. Share the 4 tens between 3. Can we 	✓ ✓ ≯ <u>₹</u> %	42 = 30 + 12
make an exchange with		30 ÷ 3 = 10
Exchange the ten for		12 ÷ 3 = 4
Image: style="text-align: center;">10 ones and share out Image: style="text-align: center;">12 ones		10 + 4 = 14
Jse of the 'bus stop method' using	This can easily be represented pictorially, until	122
rouping and counters. Key language for	the children no longer to do it.	123
rouping- how many groups of X can we	It can also be done to decimal places if you have	1 1
nake with X hundreds'- this can also be lone using sharing!	a remainder!	5 6 ¹ 1 ¹ 5
615 ÷ 5		5.015
Step 1: Make 615		
groups of 5		
H T O Step 3: Exchange 1H for		
10T and circle groups of 5		
Step 4: Exchange 1T for		
10ones and circles groups		

Fluency variatio	n, different ways	to ask children to	solve 615 ÷ 5:
Using the part whole model below, how can you divide 615 by 5 without using the 'bus stop'	I have £615 and share it equally between 5 bank accounts. How much will be in each account?	5 615	What's the calculation? What's the answer?
method?	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 = [] = 615 ÷ 5 How many 5's go into 615?	

Long division

Concrete	Pictorial	Abstract
$\begin{array}{ c c c c c }\hline \hline & Model & & & & & & & & & \\ \hline \hline & H & T & & & & & \\ \hline \hline & \bullet & \bullet & \bullet & \bullet & & \\ \hline & \bullet & \bullet & \bullet & \bullet & & \\ \hline & \bullet & \bullet & \bullet & \bullet & & \\ \hline & \bullet & \bullet & \bullet & \bullet & & \\ \hline & & & & & & & \\ \hline & & & & & & &$	Children to represent the counters, pictorially and record the subtractions beneath.	5tep one- exchange 2 122544 Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds.
Exchange 2 thousand for CONTRACTOR OF THE SECOND S		02Step two- How many groups120212254424hundreds? The 24 shows the1hundreds we have grouped.1The one is how many
How many groups of $12 \boxed{2544}$ $12 \boxed{2544}$ $12 \boxed{2544}$ hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. How many groups of 12 are in 25 hundreds? 2 groups. Circle them. Exchange the $12 \boxed{21}$ $12 \boxed{2544}$ hundreds? 2 groups. Circle them. Exchange the $12 \boxed{21}$ $12 \boxed{2544}$ hundreds? 2 groups. Circle them. How many groups of $12 \boxed{21}$ $12 \boxed$		hundreds we have left. 12 2544 for 10 tens. How many 24 14 22 2 2 The 14 shows how many tens I have, the 12 is how many I grouped and the 2 is how many tens I have
12 2544 24 14 12 2 12 2544 14 12 2 12 2544 14 12 2 12 2 12 2 12 2 12 2 14 14 14 12 2 14 14 14 15 16 16 16 16 16 16 16 16 16 16		left. 12 2544 24 14 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14

Signed: J. Greenhalgh (Mathematics Coordinator)

Date - September 2020

Review Date: September 2022