

In this topic you will discover different energy stores and how that energy is transferred by heating, electrically, mechanically and by radiation. You will cover how to calculate energy stored by gravitational potential, kinetic and elastic potential. You will calculate the power or energy transfers and the efficiency of energy transfers. You will then look at energy resources and their use in our lives. You will finally learn about the thermal conductivity of materials and their use in transferring energy by heating.

This will build on the work you did in Y7 about energy stores and transfers and the work you did in Y9 about energy transfers and energy resources.

ENERGY STORES AND TRANSFERS

Date:

ACTIVATE KNOWLEDGE

A system can store energy. A system is an object or group of objects.

There are eight ways energy can be stored in a system. We call these energy stores.

We live in a world of change. Systems are constantly changing. This means that the energy stored in a system changes too. Energy can be transferred between different energy stores.

DISSIPATED ENERGY

Date:

RETRIEVAL ACTIVITY

	Question	Answer		Mark
1	What is an object or group of objects called?	 Collection System 	 Conservation Store 	
2	Complete the law of conservation of energy: Energy cannot be	 Made Transferred 	 Created Destroyed 	
3	What energy store is in the bonds between particles?	 Nuclear Kinetic 	 Chemical Internal 	
4	What energy store do all moving objects have?	 Nuclear Kinetic 	 Chemical Internal 	
5	What energy store do objects have when raised above the ground?	 Electrostatic Kinetic 	 Elastic Potential Gravitational Potential 	
6	What energy store do charged objects have?	 Electrostatic Kinetic 	 Elastic Potential Gravitational Potential 	
7	What energy store do all hot objects have?	 Nuclear Kinetic 	 Chemical Internal 	
8	What energy store is within the nucleus of atoms?	 Nuclear Kinetic 	 Chemical Internal 	
9	What energy store do magnets and electromagnets have?	 Nuclear Kinetic 	 Elastic Potential Magnetic 	
10	What energy store do stretched or squashed objects have?	 Nuclear Kinetic 	 Elastic Potential Magnetic 	
	Score			

ACTIVATE KNOWLEDGE

The eight energy stores are:
G
E
E
κ
Μ
Ν
c
н
The law of Conservation of Energy states that:

RETRIEVAL ACTIVITY

	Question	Answer	Mark
1	What force does lubrication reduce?	 Air Resistance Friction Water Resistance Gravitational 	
2	What energy store do batteries have?	 Internal Nuclear Kinetic Chemical 	
3	What are the units of energy? (give the name and symbol)	□ Amps (A) □ Joules (J) □ Volts (V) □ Watts (W)	
4	What energy store do brakes of a car have after they are pressed?	 Internal Nuclear Kinetic Chemical 	
5	What energy store increases as an object moves upwards?		
6	What is another name for wasted energy?	 Dissipated Useless Heating Disappearing 	
7	What happens to the wasted energy of a system?		
8	What could you wrap a beaker of water in to reduce unwanted energy transfers?		
9	What energy store do moving objects have?	 Internal Nuclear Kinetic Chemical 	
10	What effect does wasted energy have on the temperature of the surroundings?		
	Score		

ACTIVATE KNOWLEDGE

THE FIFA METHOD FOR CALCULATIONS

F	FORMULA	Identify what you need to calculate and what information you are given then write the equation that you need to use.
I	INSERT VALUES	Write the numbers from the question into the correct place. This will automatically get you a mark.
F	FINE TUNE	Some questions will need to be rearranged to change the subject or some units will need to be changed here. This will get you a mark if needed.
A	ANSWER	Type the final calculation into a calculator and give your answer to the correct decimal place or significant figure and add units if required. This will get you at least one mark.

EFFICIENCY

RETRIEVAL ACTIVITY

	Question	Answer	Mark
1	What energy store do all moving objects have?		
2	What is another phrase used to describe energy transfer?		
3	Which energy transfer is caused by charges moving in a circuit?		
4	What are the units used to measure energy?		
5	What materials are used to reduce wasted energy transfers caused by friction?		
6	What happens to the wasted energy of a system?		
7	What are the units used to measure power?		
8	What are the units used to measure mass?		
9	What energy store do food and fuel have?		
10	What are the units used to measure force?		
	Score		

What does the conservation of energy state?

What is a useful energy transfer?

What is a wasted energy transfer?

What is another name for wasted energy?

What happens to wasted energy?

Date:

EFFICIENCY			
iency is the proportion or percentage of useful energy transferred.			
Efficiency = useful energy output / total energy input (x100)			
Efficiency = useful power output / total power input (x100)			
We measure Efficiency in percentage (%) but can be left as a decimal.			
We measure Energy in Joules (J)			
We measure Power in Watts (W)			
SANKEY DIAGRAMS			
sual way to represent how much energy is useful and how much energy is wasted by a ow, the more energy it represents.			
AL INPUT			

CALCULATING GRAVITATIONAL POTENTIAL ENERGY STORE Date:

RETRIEVAL ACTIVITY

1. What are the eight energy stores? (8)		
G		
E		
E		
κ		
Μ		
Ν		
C		
Н		
2. A spring loaded toy car drives up a ramp. What are the energy transfers? (3)		
a) At first, energy is stored in the car's spring. The energy is stored as		
b) When the car starts to move, the energy is transferred and now stored as		
c) As the car moves up the ramp, energy is transferred and now stored as		
3. Complete the law of conservation of energy below. (2)		
Energy cannot be		
	Score	/ 13

How do you increase the gravitational potential energy stored in an object?

Book A is on a 1m high shelf. An identical Book B is on a 2m high shelf. Which book stores more energy?

What is mass?

CALCULATING KINETIC ENERGY STORE

Date:

RETRIEVAL ACTIVITY

	Description	Energy Store	Mark
1	A magnet.		
2	Objects raised above the ground have this energy.		
3	A stretched Slinky.		
4	The energy stored in food and fuel.		
5	Energy stored in hot objects.		
6	Energy stored in moving objects.		
7	Hair stuck to a charged balloon.		
8	Energy stored in squashed or stretched objects.		
9	Energy stored in the nucleus of atoms.		
10	Man running.		
	Score		

ACTIVATE KNOWLEDGE

What objects store kinetic energy?

What is speed?

List the states of matter from least to most kinetic energy stored.

Race Car A travels at 10 m/s. Identical Race Car B travels at 20 m/s. Which car has more kinetic energy stored?

CALCULATING ELASTIC POTENTIAL ENERGY

Date:

RETRIEVAL ACTIVITY

1. What are the units of mass? (1)

2. What are the units of height? (m)

3. What energy is stored in a battery, fuel and food? (1)

4. What energy is stored in hot objects like a radiator? (1)

5. What energy is stored in charged objects? (1)

6. True/False: Energy cannot be created or destroyed, only transferred. (1)

7. What are the units of power? (1)

8. What are the units of energy? (1)

Score / 8

What objects store elastic potential energy?

What word describes how much an object is stretched?

Spring A is stretched 2m and spring B is stretched 4m. Which stores more energy?

NON- RENEWABLE ENERGY RESOURCES

Date:

$\langle \bigcirc \rangle$	
الديح)	

RETRIEVAL ACTIVITY

1. What is the following equation used to calculate? (1)	
	= ½ x mass x (speed) ²
2. What is the following equation used to calculate? (1)	
= m	nass x gravitational field strength x height
3. What is the following equation used to calculate? (1)	
= L	useful energy output / total energy input
4. What is the following equation used to calculate? (1)	
4. What is the following equation used to calculate: (1)	
	= work done / time
5. What is another phrase used to describe work done? (1)	
6. What energy is stored in a battery? (1)	
7. What energy is stored in fuels? (1)	
8. What energy is stored in radioactive substances? (1)	
9. What is the law of conservation of energy? (1)	
10. What are the units used to measure energy? (1)	
11. What are the units used to measure mass? (1)	
12. What are the units used to measure force? (1)	

Score / 12

16

There are two non-renewable energy resources:

- Fossil Fuels
- Nuclear Fuels

RENEWABLE ENERGY RESOURCES

Date:

RETRIEVAL ACTIVITY

	Question	Answer	Mark
1	What is the name of energy resources that will eventually run out?		
2	What are the three fossil fuels?	c and g	
3	What are the two nuclear fuels?	u and p	
4	What gas is produced when fossil fuels are burnt?		
5	Why are greenhouse gases bad for the environment?		
6	What happens to the wasted energy of a system?		
7	What are the units used to measure power?	 Joules Watts Kilograms Newtons 	
8	What are the units used to measure mass?	 Joules Watts Kilograms Newtons 	
9	What energy store do food and fuel have?		
10	What are the units used to measure force?	 Joules Watts Kilograms Newtons 	
	Score		

ACTIVATE KNOWLEDGE

What is a non-renewable energy resource?

What are the two non-renewable energy resources?

CONTENT		
	RENEWABLE ENERGY RESOURCES	
Renewable en	ergy resources are energy resources that will	never run out.

RENEWABLE ENERGY ADVANTAGES AND DISADVANTAGES