FOUNDATION
 PHYSICS UNIT 1 - ENERGY

In this topic you will discover different energy stores and how that energy is transferred by heating, electrically, mechanically and by radiation. You will cover how to calculate energy stored by gravitational potential, kinetic and elastic potential. You will calculate the power or energy transfers and the efficiency of energy transfers. You will then look at energy resources and their use in our lives. You will finally learn about the thermal conductivity of materials and their use in
transferring energy by heating.

This will build on the work you did in Y 7 about energy stores and transfers and the work you did in Y9 about energy transfers and energy resources.

This will help you prepare to make informed decisions in the future about energy resources and insulating your home.

Name:

Class:

Teacher:

ACTIVATE KNOWLEDGE

CONTENT

A system can store energy. A system is an object or group of objects.
There are eight ways energy can be stored in a system. We call these energy stores.

We live in a world of change. Systems are constantly changing. This means that the energy stored in a system changes too. Energy can be transferred between different energy stores.

The Law of Conservation of Energy states that:

Energy cannot be created or destroyed, only transferred.

RETRIEVAL ACTIVITY

	Question	Answer	Mark	
1	What is an object or group of objects called?	\square Collection \square System	\square Conservation \square Store	
2	Complete the law of conservation of energy: Energy cannot be...	\square Made \square Transferred	\square Created \square Destroyed	
3	What energy store is in the bonds between particles?	\square Nuclear \square Kinetic	\square Chemical \square Internal	
4	What energy store do all moving objects have?	\square Nuclear \square Kinetic	\square Chemical \square Internal	
5	What energy store do objects have when raised above the ground?	\square Electrostatic \square Kinetic	\square Elastic Potential \square Gravitational Potential	
6	What energy store do charged objects have? \square Electrostatic \square Kinetic	\square Elastic Potential \square Gravitational Potential		
7	What energy store do all hot objects have?	\square Nuclear \square Kinetic	\square Chemical \square Internal	
8	What energy store is within the nucleus of atoms?	\square Nuclear \square Kinetic	\square Chemical \square Internal	
9	What energy store do magnets and electromagnets have?	\square Nuclear \square Kinetic	\square Mastic Potential	
10	What energy store do stretched or squashed objects have?	\square Nuclear \square Kinetic	\square Elastic Potential \square Magnetic	
		Score		

ACTIVATE KNOWLEDGE

The eight energy stores are:
G
E
E

K

M
N
C
H

The law of Conservation of Energy states that:

WASTED ENERGY

Energy Transfers that we don't want to happen.

WASTED ENERGY IS DISSIPATED TO THE SURROUNDINGS

WASTED ENERGY IS OFTEN TRANSFERRED AS HEATING WHICH INCREASES THE TEMPERATURE OF THE SURROUNDINGS.

LUBRICATION

Lubrication reduces the amount of friction that occurs when objects move over each other. This reduces the unwanted energy transferred mechanically.

THERMAL INSULATION

Thermal Insulation reduces the amount of unwanted energy transferred by heating between objects of different temperatures.

RETRIEVAL ACTIVITY

	Question	Answer		Mark
1	What force does lubrication reduce?	Air Resistance \square Water Resistance	$\begin{aligned} & \square \text { Friction } \\ & \square \text { Gravitational } \end{aligned}$	
2	What energy store do batteries have?	Internal Kinetic	\square Nuclear \square Chemical	
3	What are the units of energy? (give the name and symbol)	$\begin{aligned} & \square \text { Amps (A) } \\ & \square \text { Volts (V) } \end{aligned}$	$\begin{aligned} & \square \text { Joules (J) } \\ & \square \text { Watts (W) } \end{aligned}$	
4	What energy store do brakes of a car have after they are pressed?	\square Internal \square Kinetic	\square Nuclear \square Chemical	
5	What energy store increases as an object moves upwards?			
6	What is another name for wasted energy?	\square Dissipated \square Heating	\square Useless \square Disappearing	
7	What happens to the wasted energy of a system?			
8	What could you wrap a beaker of water in to reduce unwanted energy transfers?			
9	What energy store do moving objects have?	\square Internal \square Kinetic	\square Nuclear \square Chemical	
10	What effect does wasted energy have on the temperature of the surroundings?			
	Score			

ACTIVATE KNOWLEDGE

THE FIFA METHOD FOR CALCULATIONS

F FORMULA

I
INSERT VALUES

F FINE TUNE

A ANSWER

Identify what you need to calculate and what information you are given then write the equation that you need to use.

Write the numbers from the question into the correct place. This will automatically get you a mark.

Some questions will need to be rearranged to change the subject or some units will need to be changed here. This will get you a mark if needed.

Type the final calculation into a calculator and give your answer to the correct decimal place or significant figure and add units if required. This will get you at least one mark.

Power is a measure of the rate of energy transfer.

NOTE: Work Done is a phrase used to describe energy transferred.

Equation:
Power = Energy Transferred / Time

Equation:
Power = Work Done / Time

We measure Power in Watts (W)

We measure Energy Transfer (Work Done) in Joules (J)
We measure Time in Seconds (s)

What is a Watt?
One Joule per second

RETRIEVAL ACTIVITY

	Question	Answer	Mark
1	What energy store do all moving objects have?		
2	What is another phrase used to describe energy transfer?		
3	Which energy transfer is caused by charges moving in a circuit?		
4	What are the units used to measure energy?		
5	What materials are used to reduce wasted energy transfers caused by friction?		
6	What happens to the wasted energy of a system?		
7	What are the units used to measure power?		
8	What are the units used to measure mass?		
9	What energy store do food and fuel have?		
10	What are the units used to measure force?		

ACTIVATE KNOWLEDGE

What does the conservation of energy state?

What is a useful energy transfer?

What is a wasted energy transfer?

What is another name for wasted energy?

What happens to wasted energy?

Efficiency is the proportion or percentage of useful energy transferred.

Equation:

Efficiency = useful energy output / total energy input (x100)

Equation:

Efficiency $=$ useful power output / total power input (x100)

We measure Efficiency in percentage (\%) but can be left as a decimal.

> We measure Energy in Joules (J)
> We measure Power in Watts (W)

SANKEY DIAGRAMS

Sankey diagrams are a visual way to represent how much energy is useful and how much energy is wasted by a system. The wider the arrow, the more energy it represents.

RETRIEVAL ACTIVITY

1. What are the eight energy stores? (8)

G

E

E

K

M

N

C

H
2. A spring loaded toy car drives up a ramp. What are the energy transfers? (3)
a) At first, energy is stored in the car's spring. The energy is stored as...
b) When the car starts to move, the energy is transferred and now stored as...
c) As the car moves up the ramp, energy is transferred and now stored as...
3. Complete the law of conservation of energy below. (2)

Energy cannot be...

ACTIVATE KNOWLEDGE

How do you increase the gravitational potential energy stored in an object?

Book A is on a 1 m high shelf. An identical Book B is on a 2 m high shelf. Which book stores more energy?

DEPENDS UPON
GRAVITATIONAL FIELD
STRENGTH
gravitational potential energy $=$ mass x gravitational field strength x height

We measure Gravitational Potential Energy in Joules (J)

> We measure Mass in Kilograms (kg)

We measure Gravitational Field Strength in Newtons per Kilogram (N/kg)
We measure Height in Metres (m)

NOTE: On Earth, the gravitational field strength is $9.81 \mathrm{~N} / \mathrm{kg}$ which is often rounded to 9.8 or $10 \mathrm{~N} / \mathrm{kg}$. In the exam it will tell you which one to use.

RETRIEVAL ACTIVITY

	Description	Energy Store	Mark
1	A magnet.		
2	Objects raised above the ground have this energy.		
3	A stretched Slinky.		
4	The energy stored in food and fuel.		
5	Energy stored in hot objects.		
6	Energy stored in moving objects.		
7	Hair stuck to a charged balloon.		
8	Energy stored in squashed or stretched objects.		
9	Energy stored in the nucleus of atoms.		
10	Man running.		
	Score		

ACTIVATE KNOWLEDGE

What objects store kinetic energy?

What is speed?

List the states of matter from least to most kinetic energy stored.

Race Car A travels at $10 \mathrm{~m} / \mathrm{s}$. Identical Race Car B travels at $20 \mathrm{~m} / \mathrm{s}$. Which car has more kinetic energy stored?

Equation:
kinetic energy $=1 / 2 \times$ mass $\times(\text { speed })^{2}$

We measure Kinetic Energy in Joules (J)

We measure Mass in Kilograms (kg)

We measure Speed in Metres per Second (m / s)

1. What are the units of mass? (1)
2. What are the units of height? (m)
3. What energy is stored in a battery, fuel and food? (1)
4. What energy is stored in hot objects like a radiator? (1)
5. What energy is stored in charged objects? (1)
6. True/False: Energy cannot be created or destroyed, only transferred. (1)
7. What are the units of power? (1)
8. What are the units of energy? (1)

ACTIVATE KNOWLEDGE

What objects store elastic potential energy?

What word describes how much an object is stretched?

Spring A is stretched 2 m and spring B is stretched 4 m . Which stores more energy?

Equation:

$$
\text { elastic potential energy }=0.5 x \text { spring constant } x(\text { extension })^{2}
$$

NOTE: This equation will be given on your Physics equation sheet. You DO NOT need to learn it.

We measure Elastic Potential Energy in Joules (J)

We measure Spring Constant in Newtons per Metre (N/m)

We measure Extension in Metres (m)

RETRIEVAL ACTIVITY

1. What is the following equation used to calculate? (1)
\qquad
2. What is the following equation used to calculate? (1)
\qquad $=$ mass x gravitational field strength x height
3. What is the following equation used to calculate? (1)
\qquad = useful energy output / total energy input
4. What is the following equation used to calculate? (1)
\qquad = work done / time
5. What is another phrase used to describe work done? (1)
6. What energy is stored in a battery? (1)
7. What energy is stored in fuels? (1)
8. What energy is stored in radioactive substances? (1)
9. What is the law of conservation of energy? (1)
10. What are the units used to measure energy? (1)
11. What are the units used to measure mass? (1)
12. What are the units used to measure force? (1)

ENERGY RESOURCES

CONTENT

NON-RENEWABLE ENERGY RESOURCES

Non-renewable energy resources are resources that will eventually run out.

Uses

- Generating Electricity
- Heating
- Transport

There are two non-renewable energy resources:

- Fossil Fuels
- Nuclear Fuels

To generate electricity, the fuels are burnt to heat water into steam. The steam turns a turbine which turns a generator which generates electricity.

Fossil fuels are reliable because they do not depend on their environmental conditions.

To generate electricity, the fuels undergo a nuclear fission reaction which heats water to produce steam. The steam turns a turbine which turns a generator which generates electricity.

Nuclear fuels are reliable because they do not depend on their environmental conditions.

Advantages	Disadvantages
Reliable because they do not depend on environmental conditions. Big energy density. DO NOT produce carbon dioxide and greenhouse gases when burnt.	Non-renewable Produce harmful radioactive waste. Danger of nuclear disaster.

RETRIEVAL ACTIVITY

$\left.\begin{array}{|c|l|l|l|l|}\hline & \text { Question } & \text { Answer } & \text { Mark } \\ \hline 1 & \begin{array}{l}\text { What is the name of energy resources that will } \\ \text { eventually run out? }\end{array} & & \\ \hline 2 & \text { What are the three fossil fuels? } & \text { c..................., o................. and g....................... }\end{array}\right]$.

ACTIVATE KNOWLEDGE

What is a non-renewable energy resource?

What are the two non-renewable energy resources?

