Overview plans for academic year 2023-2024
Subject: Mathematics
Year group/cohort: Year 11

	Knowledge and Understanding	Knowledge and Understanding	Skills	Skills	Assessment	Subject specific literacy	Cross curricular links
	Components (Key concepts)	Composite (Bigger picture)	Components (Key concepts)	Composite (Bigger picture)	What is being assessed, how, and when?	Key Vocabulary	Including Personal Development and SMSC
Autumn Term	Understand, recall and use Pythagoras' Theorem in 2D to calculate the length of the hypotenuse or a shorter side Given 3 sides of a triangle, justify if it is right-angled or not Apply Pythagoras' Theorem with a triangle drawn on a coordinate grid Calculate the length of a line	Pythagoras' Theorem	To be able to identify the hypotenuse. To be able to square two numbers. To be able to square root the calculation	To be able to apply the skills needed to successfully use the formula for Pythagoras'. Theorem	AQA topic test Apply the formula for Pythagoras' theorem to find the lengths of a right-angled triangle. Be able to use multiple steps to find missing sides in compound shapes connecting to Pythagoras'.	Hypotenuse Line Segment	```Agriculturists, such as farmers, gardeners and environmentalists all need this mathematical formula. In a job where, precise lines need to be drawn and measured to determine growing spaces and yearly yield a tool like the Pythagorean theorem is vital. whether they work in an```

	segment $A B$ given pairs of points						advisory position such as inspectors, or work more directly with food crops, animals, trees and plants, agriculturists need math.
Autumn Term	Identify, name, and draw parts of a circle Find circumferences and areas enclosed by circles Find radius/diameter, given area/perimeter of a circles Calculate perimeters and areas of composite shapes made from circles and parts of circles Calculate arc lengths, angles and areas of sectors of circles (including halves and quarter circles) Find the surface	Circles, Cylinders, Cones, and Spheres	To understand the parts of a circle. To apply formula for the circumference and area of a circle To extend the formulas of circles to cylinders. To be able to use circles with other shapes and apply the formulas. To find the volume of shapes using the formula To find the surface area of a shape by breaking down the shape in order to calculate each of the areas.	Apply the area and circumference formula. Use of a calculator to correctly calculate using pi. If calculating compound shape understand the process of splitting up the shape to accurately calculate the area and perimeter of the shape. To understand how sectors are used in circles. Calculate the surface area of shapes.	AQA topic test Calculate the area and circumference of a circle. Identify parts of a circle including arc and sector. Apply the formula for area and circumference of a circle. Find area and perimeter of compound shapes.	Circumference Area Sector Compound Radius Diameter Arc Perimeter.	The use of circles is a key component of landscaping, building and construction.

| | area and volume
 of a cylinder Find
 the surface area
 and volume of
 spheres,
 pyramids, cones
 and composite
 solids | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| | congruence
 Identify the scale
 factor of an
 enlargement of a
 shape as the ratio
 of the lengths of
 two
 corresponding
 sides Understand
 the effect of
 enlargement on
 perimeter of
 shapes Solve
 problems to find
 missing lengths in
 similar shapes
 Know that scale
 diagrams. | Identify and apply the
 correct scale factor.
 Use the correct scale
 factor when enlarging
 a shape. | applying the runes
 of similar triangles.
 Solve similar shape
 problems including
 negative scale
 factors.
 finding similar
 shapes.
 Use enlargement
 with perimeters
 and multi-step
 problems.
 Understand and
 use the scale. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Autumn Term	Understand and use column notation in relation to vectors $B e$ able to represent information graphically given column vectors Identify two column vectors which are parallel Calculate using column vectors, and represent graphically, the sum of two vectors, the difference of two vectors and a scalar multiple of a vector.	Vectors	Understand vector notation. Understand column notation. Apply vectors in a graphical situation. Calculate vectors using column notation. Apply scale factors to column vectors.	Use column vectors to add and subtract. Apply the correct scale factor to column vectors and be able to calculate using column vectors. Graphically represent vectors. Be able to apply the laws of vectors to identify parallel vectors.	AQA topic test Graphically represent vectors on a graph. Calculate vectors using column vectors. Understand the use of vectors when they are parallel.	Vector Parallel Notation Column Graphically Scalar	Navigation Velocity Acceleration Force Angular displacement
Autumn Term	Multiply together two algebraic expressions with brackets Square a linear expression Factorise quadratic expressions of the form $\times 2+b x+$ c Factorise a	Quadratic Equations	Multiply two brackets to form an equation. Factorise a quadratic equation into two brackets. Apply the rules of the difference of two squares.	Use the laws of brackets to expand a quadratic to form an equation. Given a quadratic equation factorise into two brackets. Apply the rules of a difference of two	AQA topic test Be able to expand a quadratic equation. Be able to factorise a quadratic equation into two brackets.	Brackets Quadratic Linear Expression Factorise Indices Roots	Profit and loss Athletics Finding speed

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { quadratic } \\ \text { expression x2 - } \\ \text { a2 using the } \\ \text { difference of two } \\ \text { squares Solve } \\ \text { quadratic } \\ \text { equations by } \\ \text { factorising Find } \\ \text { the roots of a } \\ \text { quadratic } \\ \text { function } \\ \text { algebraically. }\end{array} & & & \begin{array}{l}\text { squares to solve an } \\ \text { equation. } \\ \text { Find the roots of a }\end{array} & \begin{array}{l}\text { Apply the } \\ \text { difference of two } \\ \text { quadratic } \\ \text { equares to solve } \\ \text { an equation, }\end{array} \\ \text { algebraically. }\end{array}\right]$

Autumn Term	Change the subject of a formula involving the use of square roots and squares Answer 'show that' questions using consecutive integers, squares, even numbers and odd numbers Solve problems involving inverse proportion using graphs, and read values from graphs Find the equation of the line through two given points Recognise, sketch and interpret graphs of simple cubic functions Recognise, sketch and interpret graphs of the reciprocal function $y=1 / x$ with $x \neq 0$; Use graphical representations of inverse	Rearranging Equations and Graphs of Cubic and Reciprocal Functions	Use equations to rearrange equations to isolate a variable. Use of indices and how they apply when rearrange a variable. Identify quadratic, cubic, and reciprocal graphs. Sketch the graphs of cubic, quadratic, and reciprocal graphs,	Identify and apply the rules of equation to isolate the correct subject. Use indices accurately to enable the chosen subject to be identified. Sketch the graphs of a quadratic graph. Sketch the graph of a cubic graph. Sketch the graph of a reciprocal graph.	AQA topic tests Rearrange an equation to find the chosen subject. Use the law of indices to rearrange the equation correctly. Be able to plot and identify the quadratic, cubic and reciprocal.	Rearrange Equation Cubic Reciprocal Square Cubed	In medicine to isolate a particular medication and test how it changes with various changed to dose.

	proportion to solve problems in context; identify and interpret the gradient from an equation $a x+b y$ = c;						
Spring Term	Write simultaneous equations to represent a situation Solve simultaneous equations (linear/linear) algebraically and graphically Solve simultaneous equations representing a real-life situation, graphically and algebraically, and interpret the solution in the context of the problem	Simultaneous Equations	Using a real-life situation be able to convert this into two linear equations and then solve them simultaneously. Graphically solve to linear equations and give solutions,	Solve two simultaneous equations to find the solution of the two variables. Use multipliers if needed to solve the simultaneous equation. Use a graph to be able to solve where the two solutions for the variable.	AQA topic test Use a real-life situation and convert it into two simultaneous equations. Solve tow simultaneous equations to find the two variables. Using a graph identify and solve the two variables.	Simultaneous Linear Algebraically Coordinates	In banking to determine the best loan choice considering the interest rates.
Spring Term	Content based on Question Level Analysis from Rehearsal Exam 1	Bespoke Scheme of Work					

| Summer
 Term | Content based on
 Question Level
 Analysis from
 Rehearsal Exam 2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Summer
 Term | Content based on
 Question Level
 Analysis from
 Rehearsal Exam 2 | | | | |

Subject Information including exam board details:

The key stage 4 curriculum is following the scheme of work for AQA. As part of the scaffolding, we use the white rose scheme to ensure that pupils are challenged and aiming for a good pass at GCSE. Pupils will be tested at the end of each term to monitor progress and ensure that pupils are achieving the correct level. If pupils are identified for under achievement, then intervention will be applied so that they can be given the support to help them gain more confidence and go on to achieve their potential.

Careers linked to this subject area:

Education, Engineering, Finance, Banking, Accountancy, Engineering, Economist, Data analysis, Electrical engineer, Meteorologist, software developer, Stockbroker.

Enrichment Opportunities:

Enrichment is the enhancement of mathematical experiences and may feature the study of mathematics beyond the standard curriculum as defined by the requirements of any external examinations. Alternative and creative approaches to topics, including open-ended investigations. Accessible aspects of mathematics lying outside the curriculum.

