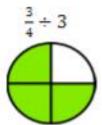
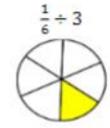
YEAR 6 MATHS SUMMER 2 - MON 13/07/2020 - LESSON 1 - LO: To divide fractions

Starter Activity

Here's a number of the week challenge for you to complete. The number is 199,005, find ten more (+), double it (x2), etc... and write the answer in the box.


Find 10 more	Write the value of each digit	Divide by 10	Find 0.1 less	Round it to the nearest 10
Double it	Find 10,000 less	This week's number is	Halve it	Reverse the digits to make another number then find the difference between them
Round it to the nearest 1000	Find 0.01 less	Reverse the digits to make another number then add them together	Is it prime or composite? Explain.	How many more to make one million?


Use this link for *BBC Bitesize* to revise your knowledge of how to divide fractions

https://www.bbc.co.uk/program mes/p00rjjt7 Lee has $\frac{2}{5}$ of a chocolate bar. He shares it with his friend. How much chocolate do they get each?

Use the diagrams to help you calculate:

Roman says

Do you agree? Explain why. No, you do not ignore the numerator as it is also divided in the process.

Becky's mum ordered a pizza for her and her friends.

When dividing

fractions by a

whole number. I

just ignore the numerator.

$$\frac{1}{3} + 2 =$$

$$\frac{1}{4} + 2 =$$

$$\frac{1}{5} + 2 =$$

What do you notice?

The numerator stays the same; the denominator changes. The denominator has doubled in each fraction.

By the time they arrived home there was only $\frac{3}{4}$ of it left.

When she shared it among her friends they each got $\frac{1}{4}$ How many friends did Becky have

with her?

Becky had three friends:

$$\frac{3}{4} \div 3 = \frac{1}{4}$$

Calculate:

$$\frac{7}{8} \div 2$$
 $\frac{2}{3} \div 2$
 $\frac{3}{5} \div 2$
 $\frac{1}{3} \div 3$

What do you notice?
Is there another strategy you could use to solve these calculations?

Calculate:

$$\frac{3}{7} \div 4$$

$$\frac{7}{9} \div 3$$

$$\frac{3}{8} \div 5$$

When dividing fractions by a whole number, I just ignore the denominator.

Do you agree? Explain why.