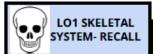
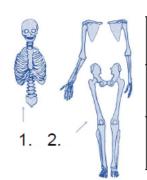
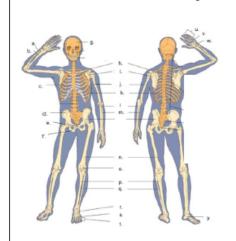
The English Martyrs Catholic School and Sixth Form College


Year 11 Knowledge organiser PE (CTEC)


Name:

CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF ANATOMY AND PHYSIOLOGY IN SPORT

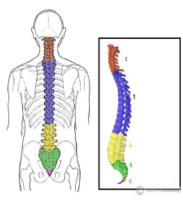

LO1- UNDERSTAND THE SKELETAL SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

Parts of the skeleton

Name of part of skeleton	Function
1 AXIAL	TO PROTECT THE ORGANS
2 APPENDICULAR	TO PROVIDE THE BODY WITH A WAY TO MOVE.

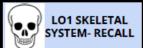
Major bones of the skeleton

- ULNA **RADIUS**
- STERNUM
- ILIUM
- **PUBIS**
- ISCHIUM
- **CRANIUM**
- CLAVICLE **SCAPULA**
- **HUMERUS**
- RIBS
- **RADIUS**
- ULNA


- **FEMUR**
- PATELLA
- **TIBIA**
- **FIBULA**
- **TARSALS**
- **METATARSALS**
- **PHALANGES**
- **PHALANGES**
- **METACARPALS**
- **TARSALS**
- X. VERTEBRAL
- COLUMN Y. TALUS

Bone shapes

Bone shape	Example in the body
FLAT	SKULL, RIBS, SCAPULA
SHORT	CARPALS, TARSALS
LONG	FEMUR, TIBIA, PHALANGES
IRREGULAR	VERTEBRA
SESAMOID	PATELLA


Vertebral column

Name of section of vertebra	N° of vertebra in section
CERVICAL	7
THORACIC	12
LUMBAR	5
SACRUM	_
соссух	

Functions of the skeleton

Function of skeleton	Description of function/example
PROTECTION	SKELETON PROTECTS (VITAL) ORGANS (FROM DAMAGE DUE TO IMPACT). E.G. CRANIUM- BRAIN, RIBS- LUNGS OR VERTEBRA- SPINAL CORD.
SUPPORT	BONES PROVIDE A SUPPORT ORGANS IN THE BODY. E.G. THE LUNGS ARE ATTACHED TO THE RIBS
MOVEMENT	SKELETON IS JOINTED (TO ALLOW MOVEMENT) AND ATTACHMENT TO MUSCLES (ALLOWS MOVEMENT) E.G.KNEE/FEMUR FOR JUMPING, SHOULDER/ HUMERUS FOR THROWING A BALL
BLOOD CELL PRODUCTION	(RED/WHITE) BLOOD CELLS ARE FORMED IN (BONE) MARROW
SHAPE	BONES PROVIDE SHAPE TO BODY AND DEFINE HEIGHT
MINERAL STORAGE	BONES ARE STORES OF MINERALS LIKE CALCIUM & PHOSPHORUS THAT CAN BE USED IN OTHER PROCESSES IN THE BODY

CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF ANATOMY AND PHYSIOLOGY IN SPORT

LO1- UNDERSTAND THE SKELETAL SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

Classification of joints

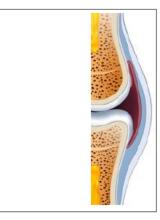
Name the three different classifications of joint and give an example of each:

Type of joint Example

FIXED/FUSED SKULL/PELVIS

CARTILAGINOUS VERTEBRAL COLUMN

SYNOVIAL JOINT KNEE/ELBOW/SHOULDER


Type of synovial joints		
	Type of synovial joint	Example
R Page	BALL AND SOCKET	SHOULDER, HIP
the state of	HINGE	KNEE, ELBOW
Platin — DE.	CONDYLOID	WRIST
	PIVOT	RADIO ULNA, TOP 2 VERTEBRA (ATLAS & AXIS)
in	SADDLE	ТНИМВ
Carpete	GLIDING	CARPALS, TARSALS

Synovial joint

Use the words in the box below to complete the table.

Ligaments Meniscus Pads of fat Synovial membrane Articular cartilage Joint capsule Bursae Synovial fluid

<u>Use a pencil</u> and complete the diagram below

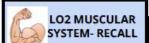
Feature	Structure	Function
JOINT CAPSULE	Fibrous tissue encasing the joint	Helps to strengthen joint and add stability
LIGAMENTS	Join bone to bone	Reinforces and strengthens the joint
MENISCUS	Discs of fibrocartilage improve the fit between the ends of long bones at a joint	Makes the joint more stable and minimises wear and tear
ARTICULAR CARTILAGE	Covers the ends of articulating surfaces of the joint	Reduces friction
SYNOVIAL FLUID	A fluid that fills the joint capsule	Nourishes and lubricates the articular cartilage
SYNOVIAL MEMBRANE	Connective tissue that surrounds the synovial fluid	Contains the synovial fluid and helps to remove debris from the joint
BURSAE	A sac filled with synovial fluid between tendons & ligaments	Forms a capsule around the joints and adds stability
PADS OF FAT	Made of fat cells	Protect the articular cartilage from trauma

Short and long term effects of exercise on skeletal system

Effects of a warm up and cool down on the skeletal system

- Reduce the impact of exercise of the joint
- Help increase the range of movement at joints

Short term effects of exercise on the skeletal system Increase in production of synovial fluid in the joints Leads to an increase in range of motion (ROM) in the joints


Long term effects of exercise on the skeletal system Positive Negative Stronger thicker bones 1. Increased risk of (osteo)arthritis

Increased joint stability/stronger joints
Prevents osteoporosis
Reduced risk of (osteo)arthritis
Improved posture

1. Increased risk of (osteo)arthritis
2. Increased risk of (osteo)arthritis elbow)
3. Increased risk of osteoporomics
4. Increased risk of (osteoporomics) injuries (e.g. shin splints, tennis elbow)
4. Increased risk of osteoporomics
5. Increased risk of osteoporomics
6. Increased risk of osteoporomics
7. Increased risk of osteoporomics
8. Increased risk of osteoporomics
9. Increased risk

Improved posture

3. Increased risk of acute/impact injuries (e.g. strains, spains, fractures, etc.)

upper arm.

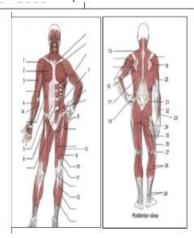
CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF ANATOMY AND PHYSIOLOGY IN SPORT

LO2- UNDERSTAND THE MUSCULAR SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

terior View Posterior View

Types of muscular contraction

Give a definition and practical example of when the following types of contraction could occur in sport:: Concentric This occurs when a muscle shortens against a resistance. e.g. in a bicep curl. The bicep brachii shorten when bringing your forearm towards your


<u>Eccentric</u> This occurs when a muscle returns to its normal length after shortening against resistance. e.g. in the bicep curl, the controlled lowering of your arm to its starting position.

<u>Isometric</u> The length of the muscle does not change nor does the joint angle. e.g. gymnast holding a position on the rings

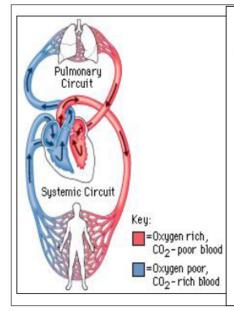
1. DELTOIDS

- 2. PECTORALIS MAJOR
- 3. BICEPS
- 4. WRIST FLEXORS
- . EXTERNAL OBLIQUES
- . RECTUS ABDOMINIS
- . I INTERNAL OBLIQUES
- ADDUCTOR GROUP (Adductor Magnus, Adductor Brevis, Adductor Longus)
- RECTUS FEMORIS
- 10. VASTUS LATERALIS
- VASTUS MEDIALIS
- L2. TIBIALIS ANTERIOR
- 13. VASTUS INTERMEDIUS
- 14. PRONATOR TERES

- 15. TRAPEZIUS
- 16. TERES MAJOR
- 17. LATISSIMUS DORSI
- 18. ERECTOR SPINAE
- 19. DELTOIDS
- 20. TRICEPS
- 21. GLUTEUS MEDIUS
- 22. WRIST EXTENSORS
- 23. SUPINATOR
- 24. GLUTEUS MAXIMUS
- 25. BICEPS FEMORIS
- 26. SEMIMEMBRANOSUS
 - . SEMITENDINOSUS
- 8. GASTROCNEMIUS
- 29. SOLEUS

Dominant muscle fibre type	Examples from sport
Type 1 oxidative	Marathon, jogging back into position in football, long distance cycling
Type 2a fast oxidative	400m sprint, 800m run, 200m freestyle,
Type 2b fast glycolytic	Jumping for ball in basketball, short sprint in rugby, bowling in cricket

Agonist and antagonists

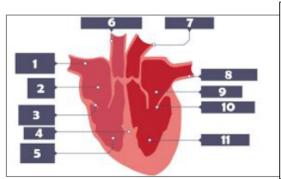


For each of the sporting actions identify the agonist and antagonist for the named joint in the table below.

Sporting action	Joint	Agonist	Antagonist
Cricket ball throw	Shoulder (R)	Deltoid	Latissimus Dorsi
Press up	Shoulder	Pectoralis major	Trapezius
Bicep curl	Elbow	Bicep brachii	Triceps brachii
Kicking a football	knee	Vastus medialis Vastus lateralis Vastus intermedius Rectus femoris	Semi- membranosus semi- tendinosus Bicep femoris
Netball shot	Elbow	Triceps brachii	Biceps brachii
Rugby spin pass	radioulnar (R)	Pronator teres	supinator
Long jump	Нір	Iliopsoas	Gluteus maximus
Sit ups	Spine	Rectus abdominis	Erector spinae

CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF ANATOMY AND PHYSIOLOGY IN SPORT

LO3- UNDERSTAND THE CARDIOVASCULAR SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

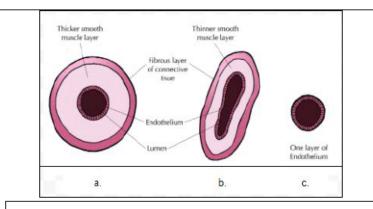

Pulmonary and systemic circulation

Use the diagram to the right to help describe the: Systemic circulation

- · Occurs in the left hand side of the heart
- The left side receives oxygenated blood from the lungs and pumps it around the body
- Oxygen is dropped of at the tissues and carbon dioxide is picked up
- It then brings deoxygenated blood back to the right hand side of the heart

Pulmonary circulation

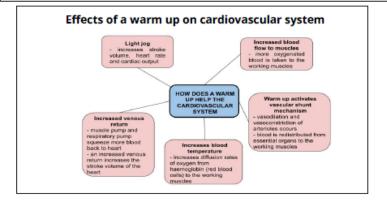
- . Occurs in the right hand side of the heart
- The right side receives deoxygenated blood from the body and pumps it to the lungs
- Carbon dioxide is dropped off at the lungs and oxygen is picked up
- It then brings oxygenated blood back from the lungs to the left hand side of the heart

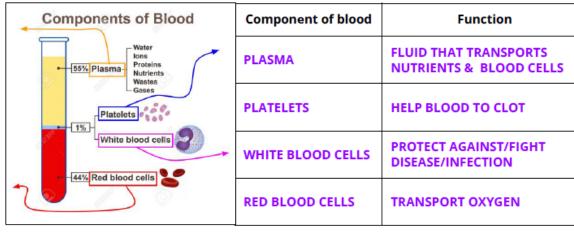

Heart Anatomy

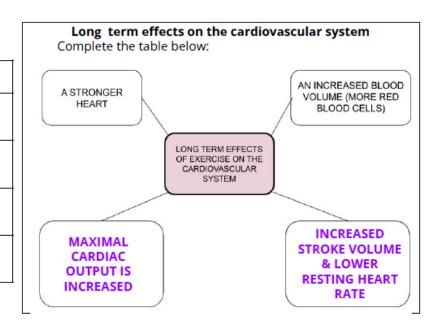
Identify the parts of the heart labelled in

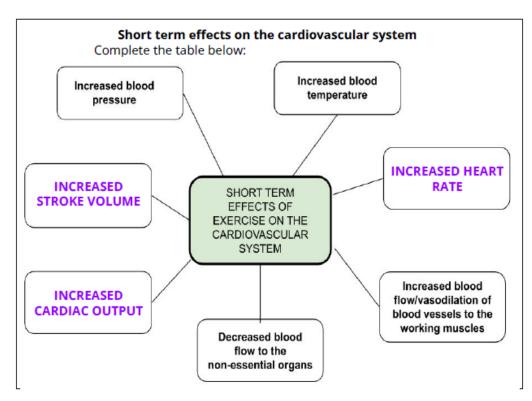
- the diagram:

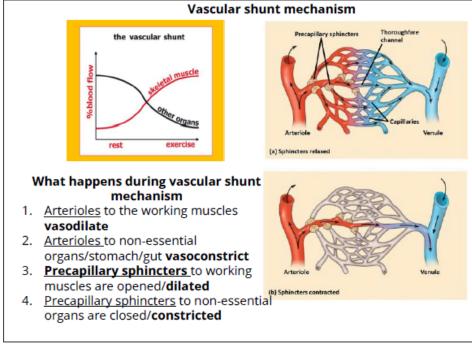
 1. VENA CAVA
- 2. RIGHT ATRIA
- 3. TRICUSPID VALVE
- 4. SEPTUM
- 6. RIGHT VENTRICLE
- 6. PULMONARY ARTERY
- 7. AORTA
- 8. PULMONARY VEIN
- 9. LEFT ATRIA
- 10. BICUSPID VALVE
- 11. LEFT VENTRICLE

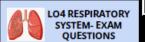

Heart measurements	Units	Definition
Heart rate (HR)	bpm	The number of times the heart beats per minute (bpm)
Stroke volume (SV)	ml	The volume of blood pumped out of the left ventricle (of the heart) in one contraction
Cardiac output (Q)	Litres per min (l/min)	Volume of blood pumped out of the heart per minute, calculated using the formula CO= SV x HR

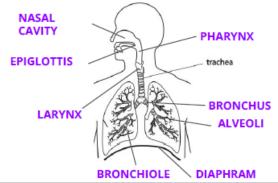

Blood vessels


Complete the table below for the three blood vessels above.


	Name	Function	Characteristic
a	Artery	Carry blood away from the heart	Muscular walls, relatively large lumen
b	Vein	Carry blood back to the heart	Large lumen, contain valves to prevent backflow of blood
c	Capillary	Carry blood to the tissue/cells	Thin walls (1 cell thick), very narrow (wide enough only for 1 red blood to pass through at a time







CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF

LO4- UNDERSTAND THE RESPIRATORY SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

Structure and function of the respiratory system organs

Label the diagram below and complete the table:

Organ	Description (i.e. structure and function)
Nasal cavity	Warms the air and traps microbes in mucus
Epiglottis	Flap at the back of the throat. Prevents food/water entering the trachea and air entering the oesophagus.
Pharynx	Point where mouth, nasal cavity and throat join. Warms and moistens the air.
Larynx	Also known as the 'voice box'. Where speech is created.
Trachea	Tube connecting pharynx to the lungs via the bronchi. Has C shaped rings of cartilage to keep the trachea open.
Bronchi	Bronchi are extensions of the trachea that lead into the left and right lungs. Similar in structure to trachea.
Bronchioles	Branch off from the bronchi into all of the lungs. They get progressively smaller and take air to and from the alveoli.
Alveoli	Gas exchange occurs in the alveoli. They are covered in capillaries.

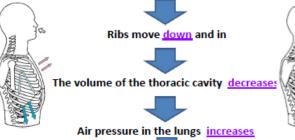
Mechanics of breathing- Inspiration and expiration

Complete the sentences below.

INSPIRATION (BREATHING IN)

EXPIRATION (BREATHING OUT)

Ribs move up and out

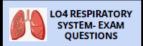

The volume of the thoracic cavity increases

Air pressure in the lungs decreases

Air rushes into lungs (down the trachea)

Air is forced out of the lungs

Additional respiratory muscles used during exercise

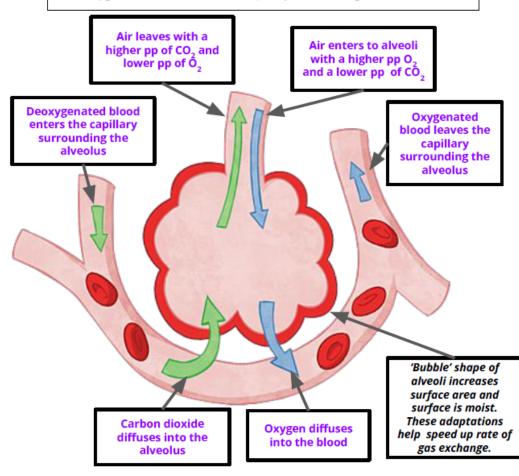

During expiration- <u>sternocleidomastoid</u>, <u>scalene</u> and <u>pectoralis</u> <u>major</u> contract to pull the clavicle upwards and outwards

During expiration- <u>internal intercostal muscles</u> contract to force the ribs downwards and inwards. The <u>rectus abdominis</u> contracts to help force the diaphragm upwards

Breathing measures

Complete the table below:

Breathing measure	Definition	Typical value at rest	Changes during exercise
Breathing rate	The number of breaths you take per minute	10-15 breaths per min	40-60 breaths per minute
Tidal volume	The amount of air you can breath in and out during one breath	0.5 litres/ 500ml	3 litres/ 3000ml
Minute ventilation	The volume of air you breathe in and out each minute	6 litres per min	90 litres per min


CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF

LO4- UNDERSTAND THE RESPIRATORY SYSTEM IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

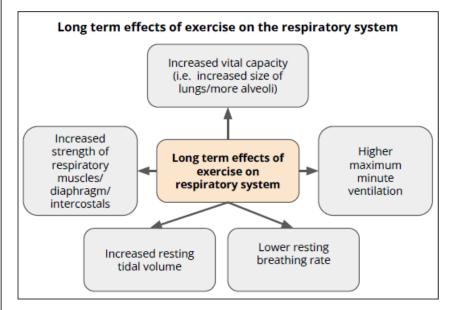
Gaseous exchange at the alveoli

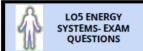
Use the sentences below to complete correctly label the diagram of the alveoli:

- Air leaves with a higher pp of CO₂ and lower pp of O₂
- ☐ Carbon dioxide diffuses into the alveolus
- Oxygenated blood leaves the capillary surrounding the alveolus
- Oxygen diffuses into the blood
- ☐ Air enters to alveoli with a higher pp O, and a lower pp of CO,
- Deoxygenated blood enters the capillary surrounding the alveolus

Short term effects of exercise on the respiratory system

Fill in the missing words below to describe the short term effects of exercise on the respiratory system.


Increased breathing rate


Deeper breaths to get more air in. i.e. increase tidal volume

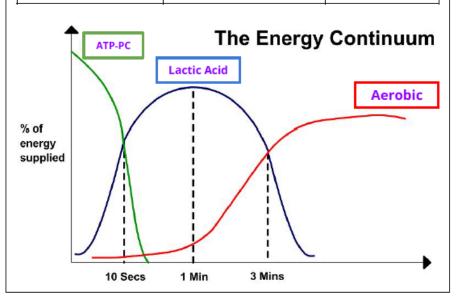
Increased minute ventilation

More oxygen taken in

More carbon dioxide expired/breathed out

CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF

LOS- UNDERSTAND THE DIFFERENT ENERGY SYSTEMS IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY


Energy Continuum

one intensity system contribute duration

The relative contribution of each energy <u>system</u> to overall energy production depending on the <u>intensity</u> and <u>duration</u> of exercise.

Although only <u>one</u> energy system is <u>predominant</u> at any time, all three will <u>contribute</u> to activities performed.

Duration and intensity of exercise	Sporting example	Energy system predominantly being used
Intensity- very high Duration- less than 10s	High jump, 100m sprint, Olympic weightlifting	ATP-PC/ Alactic system
Intensity- high Duration- 10s-3min	400m run, 200m swim, squash rally	Lactic acid system
Intensity- low Duration- 3+min	Marathon, triathlon,	Aerobic system

ATP-PC SYSTEM

Overview of system

- Creatine phosphate (CP) is stored in the muscle cells
- CP is broken down by enzyme creatine kinase
- When CP is broken down into a creatine molecule and a phosphate molecule energy is released
- This energy is used to resynthesise ADP back to ATP

ATP-PC System A Muscle Contractions Feed ADP

Advantages

- · No fatiguing by products
- Energy is stored in the muscles
- · Energy is provided immediately
- · It doesn't need oxygen to provide energy
- Fewer reactions are involved

Disadvantages

- It only lasts 10 seconds
- The ratio of ATP resynthesis is only 1:1
- There are limited stores of CP (these cannot be greatly increased)

LACTIC ACID SYSTEM

Overview of system

- In intensity of exercise remains high, after 10 sec or so the lactic acid system becomes the predominant energy system
- Glucose is broken down by enzyme PFK into pyruvic acid
- This releases enough energy to resynthesise 2 ATP
- As the physical activity is still at a high intensity there is insufficient oxygen
- · Pyruvic acid is converted into lactic acid
- Build up of lactic acid lowers the pH in the muscles
- The body's ability to produce energy and perform declines

Glycogen Glycolysis Glucose energy phosphofructokinase Pyruvic acid no cxygen Lactic acid

Advantages

- . It has a fast speed of reaction for fast work
- · It does not require oxygen
- There are few chemical reactions
- It provides more ATP than the ATP-PC system

Disadvantages

- It only lasts between 30 sec and 2 minutes dependent on the intensity of exercise
- The by product lactic acid is fatiguing to muscles

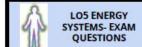
AEROBIC SYSTEM

Overview of system

- If the intensity of exercise is moderate or low then
- the aerobic system is dominant
- Relies on presence of/sufficient oxygen
 Fuel is glucose/ glycogen/ carbohydrates and fats
- Three stages to aerobic system

Glycolysis- occurs in muscle cell, 2 ATP produced Krebs Cycle- occurs in mitochondria, 2 ATP produced Electron transport chain- In mitochondria, 32-34 ATP produced

 Total ATP produced 36-39 ATP. If fat broken down up to 144 ATP

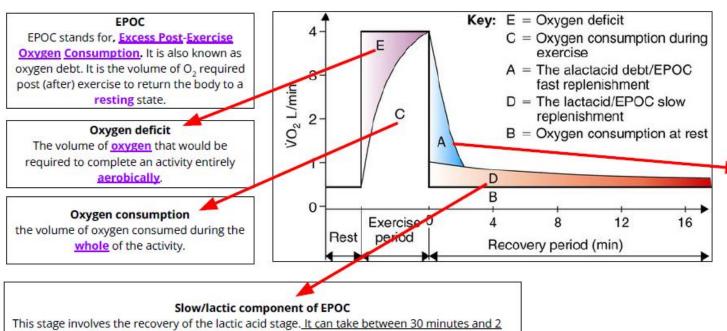

Consponent 2 Lipid (phospit) Diver (phospit) Acate) proces Pro celestion (procession) Pro celestion (procession) Procession (procession) Acate) procession (procession)

Advantages

- It is a very efficient production of energy
- Almost limitless energy production potential
- There are no fatiguing by products
- It uses fats as an energy source

Disadvantages

- It is only suited to low to moderate intensity activities
- · It takes time to transition to the system
- It takes up to 20 minutes to start to use fats as an energy source


CAMBRIDGE TECHNICALS LEVEL 3 SPORT AND PHYSICAL ACTIVITY UNIT 1- PRINCIPLES OF ANATOMY AND PHYSICLOGY IN SPORT

LOS- UNDERSTAND THE DIFFERENT ENERGY SYSTEMS IN RELATION TO EXERCISE AND PHYSICAL ACTIVITY

Energy Continuum

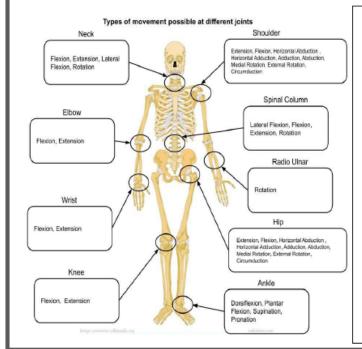
The energy continuum allows different sports and activities to be placed in relation to how aerobic or anaerobic they are. Activities to the left (anaerobic) will rely heavily on the ATP-PC system and Lactic acid system. Activities to the right (aerobic) rely heavily on the aerobic system for energy.

Can you place following activities on the energy continuum below: 1. High jump 2. Long rally in badminton 3. Rugby scrum ANAEROBIC VOLLEY BALL 3. Rugby rally in FOOTBALL badminton

Fast/alactic component of EPOC

This stage involves the recovery of the ATP-PC system.

- <u>Phosphocreatine</u> (PC) stores are <u>fully</u> replenished in 2-3mins
- PC stores are 50% restored in 30 secs.
- Myoglobin stores are resaturated takes 2-3min
- Whole process requires approximately 4 litres of O₂


Effects of a cool down on EPOC

EPOC an be sped up with a cool down

- <u>Cool down</u> helps to keep muscles 'metabolically' active (so more able to break down lactic acid)
- capillary beds that supply the muscles are left dilated so more oxygen can reach the muscles to help break down and remove lactic acid

This stage involves the recovery of the lactic acid stage. It can take between 30 minutes and 2 hours

- Removal of <u>lactic acid</u> from the muscles and the blood. It is converted into other substances e.g. pyruvate, glycogen, glucose
- Removal of <u>carbon</u> <u>dioxide</u> from the bloodstream that has built up during anaerobic exercise
- Replacement of glycogen in the muscles
- <u>Breathing rate</u> and <u>cardiac output</u> remain elevated during this stage to get lactic acid out of bloodstream and expel CO₂ from the body

Movements:

- Flexion/Extension
- Lateral flexion
- Abduction/Adduction
- Horizontal abduction/Horizontal adduction
- Medial Rotation/Lateral Rotation
- Circumduction
- Pronation/ Supination
- Dorsiflexion/Plantar flexion

Movement Analysis of Sprinting

Nam Joint	ie of	Type of Joint	Bones Articulating	Movement Occuring
1	(R) Ankle	Hinge	Tibia, Fibula, Talus	Dorsiflexion
2	(R) Knee	Hinge	Femur, patella, fibula, tibia	Flexion
3	(R) Hip	Ball and socket	Pelvi, femur	Flexion
4	(L) Hip			Extension
5	(L) Knee			Extension
6	(L) Ankle			Plantar flexion
7	(R) Elbow	Hinge	Humerus, radius, ulna	Extension

Movement analysis of a press up (downward movement)

Site of Joint	Joint movement	Agonist (+ type of contraction)	Antagonist
Shoulder	Horizontal abduction	Pectoralis major (eccentric)	Trapezius
Elbow	Flexion	Triceps brachii (eccentric)	Biceps brachii

Movement analysis of kicking a football

Site of Joint	Joint movement	Agonist (+ type of contraction)	Antagonist
Hip	Flexion	lliopsoas (concentric)	Gluteus maximus
Knee	Extension	Vastus medialis Vastus intermedius Vastus lateralis Rectus femoris (concentric)	Semitendinosus Semimembranosus Bicep femoris
Ankle	Plantar flexion	Gastrocnemius Soleus (concentric)	Tibialis anterior