Unit 1: Principles and Applications of Biology

Learning Activities and Resources

This section offers a preview of how a scheme of work may be designed for this unit. It includes suggestions for each aspect of the specification, and suggested resources to coincide with the teaching and learning planner activities and resources. Both resources can be used alongside each other or in isolation.

Please note that the suggestions provided below are suggestions and are not mandatory, this resource is to support delivery of the qualification.

No.	Lesson Title		Spec Ref	Learning Objectives	Learning Tasks/Activities	Resources	Self-Directed Study		Stretch and Challenge
1	Structure and	A1 - Structure and function of cells and tissues	A1.1.2	 Understand the basic structure of eukaryotic cells. Identify key organelles in plant and animal cells. 3. Explain the role of organelles in 	to represent organelles (e.g., gummy sweets for nucleus, sprinkles for ribosomes) for plant and animal cells (30 min).	STEM.org.uk: Cell organelle resources (https://www.stem.org.uk/resources/elibrary/resource/34589/cell-suitable-home-teaching). Sweets, bowls, labels for jelly cell activity.	100word summary (1- 2 hours). Watch a video on cell structure (e.g., Khan Academy) and list	Include prokaryotic	Create a short video explaining how organelle structure relates to function (2-3 hours).

2	Comparing Plant and Animal Cells	dittarancas	A1.1.2 A1.3	plant and animal cells. 2. Create a game to reinforce organelle knowledge.	game with organelle names and functions) (40 min).	Wordwall: Virtual cell organelle matching game (https://wordwall.net/resource/1 23456/cell-organelle-matchinggame). Cardstock, markers, game templates.	hours). Read an article	Support: Provide a list of organelles and functions for the game.	Design a game that includes prokaryotic cell structures (2 hours).
3	Cell	A1 - Identifying different cell organelles	A1.2	plant and animal cell diagrams. 2. Describe the function of each	micrographs (20 min). Create a Venn diagram comparing cell structure, organelles, functions,	Histology Guide: TEM cell structures (https://histologyguide.com/). Diagram worksheets, electron micrographs.	support cell function (1-2 hours). Review a labelled cell diagram online and quiz yourself on	Provide partially completed Venn diagrams.	Research organelle adaptations in specialized cells (e.g., chloroplasts in guard cells) (2 hours).

	Microscopy 4 and Slide Preparation	preparing	A1.2 A1.5	plant and animal cells. 2. Use a	Laboratory activity: Prepare slides of cheek cells (methyl blue) and onion skin cells (iodine) (30 min). Observe slides under a microscope and create annotated drawings (30	STEM Learning: Cheek cell practical methodology (https://www.stem.org.uk/resour	techniques and summarize key	Provide preprepared slides for	Write a short report comparing optical and electron
				3. Calculate cell sizes using IAM calculations.	'	Microscopes, slides, stains, graticules.	Practice IAM calculations using provided micrographs (1 hour).	Extension: Calculate cell sizes using electron micrographs.	microscopy (2 hours).
į	Prokaryotic Cell Structures		A1.1.1 A1.4	prokaryotic cells. 2. Calculate cell sizes using electron micrographs.	prokaryotic cells (20 min). Perform IAM calculations for prokaryotic cell sizes (20 min).	IB Guides: Prokaryotic cell electron micrographs (https://ibguides.com/biology/no tes/prokaryotic-cells). Electron micrograph images.	Create a comparison table of prokaryotic and eukaryotic cells (1 hour). Research bacterial cell wall types (e.g., Grampositive vs. Gramnegative) (1 hour).	prokaryotic cell diagrams. Extension: Research bacterial cell	Analyse the evolutionary significance of prokaryotic structures (2 hours).

Knowledg Check - 6 Cell Structure	e A1 - Knowledge check	A1.1A1.5	 Consolidate knowledge of cell structure terminology. Apply knowledge in interactive quizzes. Review key concepts through peer discussion. 	Individual activity: Complete quizzes on Quizlet, Kahoot, or Quizizz (30 min). Peer review of quiz results and glossary creation (30 min).	Quizlet: Cell structure flashcards (https://quizlet.com/ /cellstructure). Quiz platforms, glossary templates.	(1 hour). Review	Support: Provide a premade glossary.	Design a quiz question set for peers (1-2 hours).
Introducti n to 7 Specialize Cells	o A2 - Structure d and function of	A2.1	concept of stem cells and differentiation.	Whole-class teaching: Introduce stem cells and differentiation via video (20 min). Group discussion on stem cell applications and ethics (20 min).	(https://youtu.be/-uno7Uj2cjk). Nature article: Stem cell therapy (https://www.nature.com/articles	Summarize a recent stem cell research article (100 words, 1-2 hours).	Support: Provide guided notes on stem cells.	Debate the ethical implications of stem cell
	specialized cells			Q&A session to clarify concepts 20 min).		Talk on stem cells and note key points (30	Extension: Discuss embryonic vs. adult stem cells.	research (2 hours).

8	Cell	A2 - Specialized cell activity	A2.1	2. Share information about specialized cells with	Small group activity: Students assigned a specialized cell, circulate to gather info (30 min). Create a table summarizing cell types and functions (30 min).	Quizlet: Specialized cells flashcards (<u>https://quizlet.com//specialise</u> d- <u>cells).</u>	Research one specialized cell type in detail (1-2 hours). Create a flashcard set for specialized cells (1 hour).	Support: Provide a list of cell types and functions. Extension: Include less common cell types (e.g., guard cells).	Create a poster linking cell structure to function (2 hours).
g	Plant Tissue Dissection	A2 - Investigating plant tissues	A2.1	2. Explain the function of specialized plant cells. 3. Relate cell structure to tissue	Laboratory activity: Dissect plant parts (roots, stem, flower) (40 min). Create annotated diagrams of plant tissues (30 min). Discuss position of specialised cells in plant anatomy in small groups (20 min).	Science Sparks: Flower dissection (https://www.sciencesparks.com/plant-sciencedissect-a-flower). Dissection kits, plant specimens.	Write a 150- word report on plant tissue functions (1-2 hours). Watch a video on plant anatomy and summarize (30 min).	Support: Provide predissected plant parts. Extension: Compare monocot and dicot tissues.	Research adaptations of xerophytic plant tissues (2 hours).
10	Transpiration n in Plants	A2 - Investigating transpiration	A2.1	transpiration using celery. 2. Explain how transpiration relates to cell structure.	Laboratory activity: Set up celery in food-coloured water (15 min, results observed next day). Discuss results in relation to xylem function (30 min). Summarize findings in pairs (15 min).	Science on the Shelves: Celery transpiration (https://www.york.ac.uk/res/sots/activities/celery.htm). Celery, food colouring, knives.	Watch a video on transpiration and summarize key points (30 min). Research transpiration in	Support: Provide pre- cut celery samples.	Design an experiment to test environmental effects on

				3. Analyse water movement in plants.			different plant types (1 hour).		transpiration (2 hours).
1:	White Blood Cells	A2 - White blood cells	A2.1	 Understand white blood cell structure and function. Create a visual representation of white blood cell action. Relate structure to immune function. 	Whole-class teaching: Watch video on white blood cells (15 min). Individual activity: Create a cartoon strip depicting white blood cell actions (30 min). Share cartoons in small groups (15 min).	YouTube: White blood cells video (https://youtu.be/qWSWWPZYGHU). Drawing materials, cartoon templates.	blood cell in detail (1-2	templates.	Create a short animation of white blood cell action (2-3 hours).
1:	2 Sex Cells	A2 - Sex cells	A2.1	egg cell structure and function. 2. Create 3D	Whole-class teaching: Introduce sex cells via video (15 min). Individual activity: Create 3D models of sperm and egg cells using clay (40 min). Group activity: Discuss how structure is adapted to function in sex cells (35 min).	YouTube: Sperm and egg cells video (https://youtu.be/CuxaXghfyeE). Modeling clay, paper, cameras.	Write a 150- word explanation of fertilization (1-2 hours). Research reproductive technologies (1 hour).	Provide	Research assisted reproductive technologies (2 hours).

13	Check - Specialized	A2 - Knowledge check	A2	 Consolidate knowledge of specialized cell terminology. Apply knowledge in interactive quizzes. Review key concepts through peer discussion. 	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Quizlet: Specialized cells flashcards (https://quizlet.com//specialised-cells). Quiz platforms, glossary		Support: Provide a premade glossary.	Design a quiz question set for peers (1-2 hours).
14	n to Biological	A3 - Structure and function of biological tissues	A3.1	 Define cell, tissue, organ, organ system, and organism. Understand the hierarchy of biological organization. Explain the role of tissues in organ function. 	Group discussion on tissue functions in organs (20 min)	BBC Bitesize: History of the cell (https://bitesizebio.com/166/history-of-cell-biology/).	levels (1 hour).	Support: Provide a template for the flowchart.	Research tissue engineering applications (2 hours).
15	· .	Epithelial	A3.1.1 A3.1.2	 Observe epithelial tissue under a microscope. Compare squamous, goblet, and ciliated cells. Relate cell structure to tissue function. 	slides of epithelial cells (40 min). Create annotated diagrams comparing cell types (30 min).	Medicine LibreTexts: Epithelial tissue microscopy (https://med.libretexts.org/Books helves/Anatomy_and_Physiology/Examining_epithelial_tissue). Microscopes, prepared slides.	tissue in detail (12 hours). Review epithelial	Support: Provide preannotated diagrams.	Analyse epithelial tissue adaptations in different organs (2 hours).

16	Endothelial Tissue Microscopy	Endothelial	A3.2.1	 Identify structure of endothelial tissue. Explain functions of endothelial tissue. Relate risk factors to development of atherosclerosis. 	Laboratory activity: View prepared slides of endothelial cells (40 min). Create annotated diagrams comparing cell types (30 min). Discuss observations in small groups (20 min).	Microscopes, prepared slides	Summarize endothelial tissue functions in 150 words (1-2 hours).	Support: Provide preannotated diagrams.	Analyse endothelial tissue adaptations in different organs (2 hours).
17	Cardiovasc ular	Respiratory	A3.1.3	 Research COPD and/or atherosclerosis Create a slide 	Small group activity: Research COPD (30 min). Prepare and present slide deck (30 min).	NHS: Cardiovascular diseases (https://www.nhs.uk/conditions/cardiovascular-disease/). ASH: Smoking and respiratory disease (https://ash.org.uk/resources/smoking-and-respiratory-disease).	Research smoking cessation programs (1 hour).	Support: Provide research templates.	Propose a public health campaign to reduce smoking (2 hours).
18	Structure and	A3 - Structure and function of muscles	A3.3	 Understand gross and microscopic muscle structure. Compare fast and slow twitch muscle fibres. Perform a chicken wing dissection. 	Whole-class teaching: Introduce muscle structure via video (20 min). Laboratory activity: Dissect chicken wing (40 min). Create comparison table of fast and slow twitch fibres (30 min).	overview (https://youtu.be/rMcg9YzNSEs). ASTA: Chicken wing dissection (https://assist.asta.edu.au/sites/assist.asta.edu.au/files/SOP%20 Performing%20a%20chicken%20	Research muscle fibre types in athletes (1-2 hours). Watch a video on muscle physiology and summarize (30 min).	Provide predissected	Analyse muscle adaptations in elite athletes (2 hours).

1	Nervous Tissue and	A3 - Structure and function of nervous tissue	A3.4.1 A3.4.2 A3.4.3	on neurone differences. 3. Analyse nerve	Whole-class teaching: Discuss neurone types via video (15 min). Create flashcards on myelinated vs. non-myelinated neurones (25 min). Compare impulse speed graphs (20 min).	(https://youtu.be/nV OEvin9Xs).		Support: Provide premade flashcards.	Research neurodegenerati ve diseases affecting neurones (2 hours).
20/	Transmissi	A3 - Synaptic transmission	A3.4.4 A3.4.5 A3.4.6	function. 2. Create a stop- motion model of synaptic transmission.	Whole-class teaching: Introduce synapses via video (15 min). Small group activity: Create stopmotion model using clay (60 min). Annotate a synapse diagram (10 min). Discussion of imbalances of brain chemicals including Dopamine in Parkinsons (35 min)	YouTube: Nervous system synapse (https://youtu.be/VitFvNvRIIY). Modeling clay, cameras.	flowchart of synaptic transmission (1	Support: Provide preannotated synapse diagrams.	Create an animation of synaptic transmission (23 hours).
2	and Function of	B1 - Structure and function of water	B1.1 B1.2	0	Whole-class teaching: Discuss water's structure via animation (15 min). Laboratory activity: Carousel of experiments (surface tension, cohesion, polarity, capillary action)	animation (<u>https://youtu.be/A88ih2PQDNs</u>). Homeschool Scientist: Water	importance in 150 words (1-2 hours).	Support: Provide experiment result templates.	Research water's role in enzyme function (2 hours).
				3. Relate properties to biological roles.	(30 min). Micro-teach in groups on water's properties (15 min).	(https://thehomeschoolscientist.com/testing-the-properties-ofwater/). Soap, pepper, paper clips, food colouring, paper towels.	water's role in cells and note key points (30 min).		

23	Introductio n to	and function	B2.1 B2.2	knowledge. 3. Discuss	activity on carbohydrates via video (20 min). Group discussion on carbohydrate functions (20 min).	YouTube: Carbohydrates biochemistry (https://www.youtube.com/watch?v=carbohydrates-sugarsbiochemistry).	Expand mind map with additional research (1 hour). Research carbohydrate sources in diet (1 hour).	Support: Provide a starter mind	Research carbohydrate metabolism disorders (2 hours).
24	Carbohydra te Structure Modelling	B2 - Structure of carbohydrate s	B2.1 B2.2	 Model monosaccharides, disaccharides, and polysaccharides. Understand chemical bonding in carbohydrates. 3. Relate structure to function. 	land toothnicks (40 min)	Sweets, toothpicks, modelling guides.	Research one carbohydrate type in detail (1-2 hours).	models. Extension:	Analyse carbohydrate digestion pathways (2 hours).
	Testing for	B2 - Testing for carbohydrate s	B2.3	1. Perform tests for simple sugars and carbohydrates. Analyse test results in relation to structure. 3. Summarize findings using quizzes.	Laboratory activity: Test samples with Benedict's solution and iodine (30 min). Complete interactive quiz on results (15 min). Discuss findings in pairs (15 min).	5c9d5baab2e4c6001afc0f9f/bio	Write a lab report on carbohydrate testing (1-2 hours).	Support: Provide result tables.	Design an experiment to quantify sugar content (2 hours).

26	Protein Structure Modelling	and	B3.1 B3.2	protein structure levels. 2. Build protein models using pipe	Demonstrate protein	Science and Math with Mrs. Lau: Protein structure activity (https://www.scienceandmathwit hmrslau.com/2014/09/hands-onbiochemistry-beads-pipecleaners). Pipe cleaners, coloured beads.	protein's structure and function (1-2 hours). Create a diagram of protein folding	models. Extension:	Analyse protein misfolding diseases (2 hours).
27	Protein Structure Testing	B3 - Structure and function of proteins		for the presence of	Whole class activity: Biuret test	<u>Biuret Test for Protein: Principle,</u> Procedure, <u>Results, Uses</u>	interactive learning activity on protein	practical support as	Research limitations of protein biuret test (1 hour)
28	Introductio n to Nucleic Acids		B4.1 B4.2	discovery history. 2. Understand DNA structure and components.	Whole-class teaching: Discuss Rosalind Franklin's role (20 min). Individual activity: Use virtual lab to visualize DNA, create annotated drawings (40 min).	Nature: Rosalind Franklin article (https://www.nature.com/articles /d41586-023- 01313-5). Illumina: DNA structure virtual lab (https://www.illumina.com/conte nt/dam/illuminamarketing/apps/dnaday/index.html). ————————————————————————————————————	hour). Watch a video	Support: Provide	Debate the ethics of DNA discovery credit (2 hours).

29	0		r B4.1 r B4.2 c	nutations and onsequences. Relate DNA structure	J	(https://w	Making DNA with sweets ww.youtube.com/watc h?v=5- Sweets or molymods.	Research one type of DNA mutation (1-2 hours). Create a diagram of DN replication (1 hour).	Provide premade DN <i>A</i>	Analyse mutation impact on protein synthesis (2 hours).
	Extraction	B4 - Extract DNA from fruit	B4.1 B4.2	1. Extract DNA from fruit cells. 2. Explain the purpose of each extraction step. 3. Relate DNA extraction to cell structure.	Laboratory activity: Extraction strawberries (45 min Discuss the role of mashing detergent, and heating (30 Summarize findings in pair). g,) min).	Fruit detergent extraction	report on DNA	Support: Provide stepby-step instructions.	Design an experiment to optimize DNA extraction (2 hours).
31	Introductio	B5 - Structure and function of lipids	B5.1 n B5.2	1. Understand triglyceride, phospholipid, and cholesterol structure. 2. Create a table comparing lipid properties. 3. Discuss lipid functions.	Whole-class teaching: Disc lipid structure via video (1: Create a table comparing I properties (30 min). Class discussion on lipid ro min).	5 min). ipid	(https://med.libretexts.org/Cours	Summarize lipid functions in 150 words (1-2 hours).	Support: Provide a partially completed table.	Research lipidrelated disorders (e.g., atherosclerosis) and link to previous content (2 hours).

	Lipid Structure Modelling	Structure of	B5.1 B5.2	Create paper models of lipid structures Identify key components (glycerol, fatty acids, phosphate groups). Relate lipid structure to function.	Small group activity: Produce p models of lipids (40 min). Discuss model components in groups (20 min).	paper	paper models (https://behindthebiologylessons .wordpress.com/2023/12/27/usi ng-lipids-as-the-basis-of- asynoptic-lesson/). Paper, art	hours). Create a	• •	
33	Functions of Lipids	Function of	B5.2 B5.3	 Research lipid functions (energy storage, insulation, membrane formation). Create a slide presentation on lipid functions. 	Small group activity: Research functions and prepare slide de min). Present findings to the class (min). Testing for presence of I (20 mins)	ck (20 20 ipids	(https://med.libretexts.org/Cours es/Metropolitan_State_University _of_Denver/Introduction_to_Nutri tion_(Diker)/05%3A_Lipids/5.3%	hour). Research lipid	Support: Provide research templates.	Propose a study on lipid dietary impacts (2 hours).
				3. Discuss how to test for presence of lipids.				signalling (1 hour).		
34	Discussion - Reindeer	B5 - Class discussion about reindeers	B5	Discuss environmental Ampacts on lipid Composition.	Whole-class discussion: Analyse reindeer hoof lipid Composition (30 min). Group debate on proposed Explanations (30 min).		be: Lipid overview //youtu.be/Ezp8F7XJHWE).	Research fatty acid saturation in other animal (1-2 hours). Create a diagram of membrane lipic structure (1 hour).	Support: Provide discussion prompts.	Propose an experiment to test lipid adaptation hypotheses (2 hours).

35	Check -	B5 - Knowledge check	B1-B5	terminology 2 Annly	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Quizlet: Biological molecules flashcards (<u>https://quizlet.com//biological</u> molecules).	molecule terms (1 hour).	Support: Provide a premade glossary.	Design a quiz question set for peers (1-2 hours).
36	Transport	C1 - Cell transport mechanisms	C1.1	 Identify cell membrane components. Understand the fluid mosaic model. Discuss membrane component roles in transport 	cell membrane structure via video (15 min). Individual activity: Create a	YouTube: Inside the cell membrane (https://youtu.be/qBCVVszQQNs) . NHGRI: Cell membrane structure (https://www.genome.gov/geneti_cs-glossary/Cell-MembranePlasma-Membrane).	Summarize the fluid mosaic model in 100 words (1 hour).	Support: Provide presentation templates.	Research membrane repair mechanisms (2 hours).
	Membrane Permeabilit Y	Membrane	C1.1 C1.2	membrane permeability. 2. Analyse results	beetroot cylinders at different temperatures (45 min).	SNAB Biology: Temperature and membranes (https://snabbiology.com/effectof-temperature-on-cell-		Provide result	Design an experiment to test solvent effects on
				colorimeter. 3. Relate findings to membrane structure.	min). Discuss findings in pairs (15 min).	Beetroot, colorimeter, water baths.	Research membrane fluidity factors (1 hour).		membranes (2 hours).

38	Diffusion in Agar Cubes	C1 - Diffusion		agar cubes. 2. Analyse cube size effects on diffusion.	cubes, place in HCl, measure diffusion (45 min). Analyze results in groups (30 min).	Royal Society of Biology: Diffusion experiment (https://practicalbiology.org/exch_ange- ofmaterials/diffusion/effect-ofsize-on- uptake-by-diffusion). Agar, HCl, indicators.	words (1 hour).	Extension: Quantify diffusion rates mathematically	Analyse diffusion in biological systems (2 hours).
39		C1 - Investigating osmosis		eggs. 2. Calculate percentage mass change. 3. Explain osmosis	Laboratory activity: Place potato slices or de-shelled eggs in solute solutions, measure mass changes (45 min). Plot results on a graph (30 min). Discuss osmosis in pairs (15 min).	osmosis-lab). YouTube: Naked egg osmosis (https://www.youtube.com/watchtps:	hours). Research	Provide precalculated	Design an experiment to measure osmotic potential (2 hours).
40	Transport Mechanism	Research cell	C1.2	exocytosis.	Small group activity: Research assigned transport mechanism (30 min). Peer teach to class (30 min).	BiologyInsights: Cell transport guide (https://biologyinsights.com/cell transport-mechanisms).	transport mechanism in 100 words (1 hour). Create a comparison table of	templates. Extension: Include	Research transport defects in diseases (2 hours).

							mechanisms (1 hour).		
4	Regulation in Aquatic Animals	C1 - Discussion about aquatic animals	C1.2	regulation. 2. Debate active transport in marine	Whole-class discussion: Debate salt regulation in sea creatures (30 min). Create a flowchart of active transport in osmoregulation (30 min).	BiologyInsights: Cell transport guide (https://biologyinsights.com/celltransport-mechanisms).	species (1-2 hours). Watch a video on	Extension: Compare freshwater and	Propose a study on osmoregulatory adaptations (2 hours).
4	Check -	C1 - Knowledge check	C1	1. Consolidate cell transport terminology. 2. Apply knowledge in interactive quizzes. 3. Review concepts through peer discussion.	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Quizlet: Cell transport flashcards (https://quizlet.com/ /celltransport).	Create a personal glossary of 10 cell transport terms (1 hour). Review notes and create a concept map (1 hour).	premade	Design a quiz question set for peers (1-2 hours).

43	Activity	Ŭ	C2.1 C2.2	1. Understand enzyme structure and function. 2. Investigate factors affecting enzyme activity. 3. Analyse enzyme reaction factors	Carouse pH on a empera concentic catalase peroxide Present air form could be	amylase, ature on lipase, ration on trypsin, and hydrogen	h?v=TLhBJQ2Q4 Royal Society of (https://practica affectingenzyme equipment.	outube.com/watc	experiment (1- 2 hours).	templates. Extension: Test additional	Design an experiment to test enzyme kinetics (2 hours).
44	Factors affecting enzyme activity	C2 - Enzymes as biological catalysts	C2.3	1. Understand enzyn structure and function 2. Investigate factors affecting enzyme activity. 3. Analyse impact of factors on enzyme activity	ion. ·s						
4:		C3 - Homeostasi:	c3.1	1. Define homeostasis and its importance. 2. Identify syst under homeostatic control. 3. Create a collaborative mind m	stems (Whole-class teaching homeostasis via vide Create a collaborativ homeostatic systems Class discussion to re (15 min).	o (15 min). e mind map of s (30 min).	YouTube: What is homeostasis? (https://youtu.be/quQr6X1Q58I). WebMD: Homeostasis overview (https://www.webmd.com/a-to-zguides/what-is-homeostasis).	Summarize one homeostatic system in 100 words (1 hour). Research homeostatic mechanisms in humans (1 hour).	Support: Provide a starter mind map.	Research homeostasis in extreme environments (2 hours).

46	Loops in	C3 - Negative feedback loops	C3.2	diagrams of corrective mechanisms. 3. Apply	Individual activity: Create flow diagrams for scenarios (30 min).	YouTube: Homeostasis feedback loops (https://www.youtube.com/watch?v=Iz0Q9nTZCw4).	hours). Create a	Support: Provide flow diagram templates.	Analyse feedback loop disruptions in diseases (2 hours).
47		C3 - Positive feedback loops		diagrams of corrective mechanisms. 3. Apply	Whole-class teaching: Discuss feedback loops via video (15 min). Individual activity: Create flow diagrams for scenarios (30 min). Share diagrams in pairs (15 min).				
48	Homeostati c Systems	C3 - Systems under	C3.3		Pair activity: Research a homeostatic	PBS Learning Media: Body control simulator (https://www.pbslearningmedia.	Write a 150-word summary of a homeostatic	Support:	Analyse feedback loops

		homeostatic control		_	•		, ,	templates.	in disease states (2 hours).
49	Guardsman	Discussion	C3.4 C3.5	homeostatic failure case study. 2. Discuss corrective mechanisms.	nronose solutions (40	YouTube: Royal Guard faints (<u>https://youtu.be/ Wqulwx5Tdk</u>).	neatstroke prevention strategies (1	Support: Provide discussion	Propose a public health campaign for heatstroke prevention (2 hours).

				Propose prevention strategies.					
١	Guest Speaker - O Homeost is in Disease	C3 - Guest s speaker	C3.4	Discuss diabetes or cardiovascular disease management. Relate clinical	Guest speaker session: Diabetes specialist or cardiovascular clinician (40 min). Q&A and discussion on homeostasis in disease (20 min).	Contact local specialists or arrange remote sessions.	Summarize the guest talk in 150 words (1-2	question	Propose a research study on homeostasis in disease (2 hours).
5	Knowledg Check - Homeost is	Knowledge	C3	1. Consolidate homeostasis terminology. 2. Apply knowledge in interactive quizzes. 3. Review concepts through peer discussion.	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Physics and Maths Tutor: Homeostasis flashcards (https://www.physicsandmathstu_tor.com/biology-revision/gcseaqa/homeostasis/).	nomeostasis terms (1 hour). Review notes	Support: Provide a premade glossary.	Design a quiz question set for peers (1-2 hours).

52	Unit 1 Exam practice	 Understand exam format and command words. Practice exam-style questions. 	Whole-class teaching: Review sample assessment materials (20 min)	om/en/qualifications/aaq/applie d-science.html). Pearson Exam Wizard	section (1-2 hours). Review exam command words	Provide annotated mark schemes	Create an examstyle question and mark scheme (2 hours).
		3. Apply mark schemes to evaluate answers.		om/en/support/supporttopics/exams/examwizard.html).	•	mark responses.	

Unit 2: Principles and Applications of Chemistry

Learning Activities and Resources

This section offers a preview of how a scheme of work may be designed for this unit. It includes suggestions for each aspect of the specification, and suggested resources to coincide with the teaching and learning planner activities and resources. Both resources can be used alongside each other or in isolation.

Please note that the suggestions provided below are suggestions and are not mandatory, this resource is to support delivery of the qualification.

N	οL	Lesson Title	T:-	Spec Ref	Learning Objectives	Learning Tasks/Activities	Dagauraga	Self-Directed Study	D:((Stretch and Challenge
	1 1	Periodic Table and	Features of the	A1.1.2 A1.1.3	Understand the structure of the periodic table	identify key features (groups, periods, atomic number).	Periodic table (hard copy or interactive: https://www.rsc.org/period	periodic table and prepare a short summary	support: Provide a simplified periodic table with key features labelled and a step-by-step	Analyse the atomic structure of an element from Period 4 and predict its properties based

		atomic structure		number). 2.Describe the atomic structure of atoms and ions using subatomic models. 3.Calculate relative atomic mass from isotope data.	teaching on atomic structure. Teacher draws subatomic models (e.g., helium, carbon, sodium) on the board, involving students in deducing proton, neutron, and electron numbers from periodic table	calculations (e.g., LibreTexts problems: https://chem.libretexts.org /), Whiteboards and markers	Mendeleev's contributions. Complete additional isotope calculation problems from LibreTexts	, i	on its position in the periodic table.
					Students work in pairs to solve problems and share answers. Plenary (10 mins): Quick quiz on periodic table features and atomic structure using multiple-choice questions to reinforce key terms.		(Problems 2.3.12.3.5).		
2	Configuratio		A1.2.1 A1.2.2 A1.2.3	electronic configurations for atoms and ions (up to	and orbital filling rules (Aufbau, Pauli.	Periodic table (hard copy), Electron configuration worksheets (LibreTexts: https://chem.libretexts.org /),	Complete LibreTexts problems 3.1.13.1.10 on electron configurations. Watch Crash Course	orbital filling order and worked examples.	Predict the electronic configuration of an ion with an unusual charge Fe ³⁺ and explain stability.

			_	activity: Students complete electron-in-	Electron Orbital Simulator (http://electronorbitalsimu lator.com/)	•	subshell configurations.	
3	3	A1.3 Ionisation energy	trends in ionisation energy across periods and groups.	do some elements require more energy to ionize? Link to nuclear charge and shielding. Main Activity 1 (20 mins): Teacher presents first and successive ionisation energy definitions using	ic-table/trends), Ionisation	LibreTexts problems 3.3.13.3.5 on ionisation energy trends.	graphs with guiding guestions.	Explain anomalies in ionisation energy trends (e.g., between nitrogen and oxygen) using electron pairing
			3. Interpret successive ionisation energy data to deduce electronic structure.	specific ionisation energies. Main Activity 2 (20 mins): Individual activity: Students plot log (ionisation energy) vs. electron number for an unknown element and deduce its electronic structure. Plenary (10 mins): Class discussion on trends in ionisation energy across Period 3, addressing misconceptions about ionisation energy equations.	Graph paper and calculators	ionisation energy (nuclear charge,	data for Period 4	and subshell stability.

,	Knowledge L Check	Content area A	A1	2. Apply knowledge in interactive guizzes	Individual activity: Complete quizzes on	Past paper questions Quizlet	Revision of content area A		
	Chemical Bonding	B1.1- B1.3 Bonding and structure	B1.2 B1.3	 Compare metallic, ionic, and covalent bonding. Draw dotand-cross diagrams for ionic and covalent compounds. Predict properties based on bonding and structure types. 	covalent) with diagrams (e.g., NaCl, CH ₄	worksheets (LibreTexts: https://chem.libretexts.org /), Molymod kits (https://molymod.com/)	Complete LibreTexts problems 4.1.1â€"4.1.3 on dot-and-cross diagrams. Watch Crash Course Chemistry video on bonding.	Support: Provide templates for dotand-cross diagrams with partially completed examples. Extension: Include compounds with dative bonds (e.g., NH ₄ +).	Analyze exceptions like aluminum chloride (covalent despite metal- nonmetal) and explain bonding.
					Plenary (10 mins): Class sorts compounds into bonding types and justifies predictions.				

Molect Orbita 6 Bond Streng	s and Covalent bonding (molecula		1. Explain sigma and pi molecular orbital formation. 2. Relate bond length to bond strength and energy. 3. Address misconception that pi orbitals are two separate orbitals.	ioi pi oibitais.		Course Chemistry video on molecular orbitals. Complete LibreTexts	Support: Use 3D models to visualize orbital overlap. Extension: Include molecules with dative bonds (e.g., CO).	Research hybridization in ethene and explain its role in pi bond formation.
Physica 7proper substai	ies of physical	B1.4	1. Describe and compare typical melting points of substances with ionic, covalent, and metallic bonding, and explain how bonding and structure influence these melting points. 2. Explain how the type of bonding and structure in a	keywords (e.g., ionic, covalent, metallic, high melting point, conducts electricity,	Free printable and virtual bingo card generator https://quizlet.com/search ?query=bonding-and- properties&type=sets https://www.chemguide.c o.uk/atoms/bondingmenu. html	https://www.che mguide.co.uk/ato ms/bondingmenu .html	Research why some covalent substances (e.g., diamond vs. iodine) have vastly	Silicon dioxide and sodium chloride both have high melting points, but for different reasons. Explain, using diagrams, if necessary, how the structure and bonding in each leads to this property

			its electrical conductivity. 3. Interpret and predict the physical properties (melting point and electrical conductivity) of given substances based on	conducts/does not conduct electricity, etc.). Main activity 2 (20 mins): Each group is assigned a substance from the previous activity. They create a mini-poster or whiteboard presentation explaining why that substance has its particular melting point and electrical conductivity, referencing bonding and structure. Plenary (10 mins): Teacher runs a quick-fire quiz (e.g., Kahoot, Socrative, or handsup true/false) with questions on melting points and conductivity of different substances.			molecular or giant covalent structures	
Molecular 8 Shape	B1.5 Molecular shape	B1.5	shapes using electron	Starter (10 mins): Discuss limitations of 2D dot-and-cross diagrams. Show a 3D model of NH3. Main Activity 1 (40 mins): Teacher introduces electron pair repulsion theory and common molecular shapes (e.g.,	Molymod kits (https://molymod.com/), Electronegativity table (https://www.rsc.org/periodic-table/trends), PhET	problems 5.2.1- 5.2.5 on	angles.	Predict the polarity of a molecule with multiple functional groups (e.g., CH ₃ OH).

				linear, tetrahedral). Students use Molymod kits to build molecules (e.g., CH ₄ , H ₂ O). Plenary (10 mins): Class discussion on different molecular shapes and links to following lesson (electronegativity and polarity). Starter (10 mins): Students construct mindmaps on different types of chemical	molecular shape simulation	Extension: Include complex molecules like SF ₆	
9 Polarity	B1.6 Electroneg ativity and polarity	its ef polar 2. mole base	Explain tronegativity and ffect on bond rity. Determine ecular polarity ed on shape and tronegativity.	bonds Main activity (20 mins): Teacher introduces concept of electronegativity and relatedness to molecular shape Main activity (20 mins): In groups students given molecular models or cut out shapes and asked to sort into different shapes, identify bond polarities and polarity. Plenary (10 mins): Each student answers three questions on a slip	Electronegativity and bond polarity (apply) (practice) Khan Academy https://phet.colorado.edu/en/simulations/molecule-polarity	Support: Provide hint sheet for group activity Extension: Provide more complex molecules	Research and bring in an example of a realworld application where molecular polarity is important (e.g., soap, water solubility, etc.).

1	Intermolecul D ar Forces	Intermolec	B1.7 B1.8	1. Identify types of intermolecular forces (London dispersion, dipole-dipole, hydrogen bonding). 2. Predict physical properties (e.g., boiling point) based on intermolecular forces. 3. Explain the role of hydrogen bonding in water's properties	Main Activity 1 (20 mins): Teacher presents types of intermolecular forces with examples (e.g., CH boiling point order for given molecules. Main Activity 2 (20 mins): Peer teaching: Students research one	LibreTexts problems 6.3.16.3.5 on intermolecular forces, ChemTube 3D ice structure (https://www.chemtube3d	Complete LibreTexts problems 6.3.66.3.10 on intermolecular forces. Watch Fuse School video on intermolecular forces.	Support: Provide a table comparing intermolecular forces and their effects. Extension: Include cyclic hydrocarbons like cyclohexane.	Explain why graphite conducts electricity despite being a nonmetal.
					intermolecular force type and justifies predictions.				

11	L	B1.8 Hydrogen bonding	B1.8	physical properties of substances with and without hydrogen bonding		Produce a slide deck presentation on hydrogen bonded molecules.	Support: Provide key word glossary for explanation Extension: Link practical activities to uses of hydrogen bonded molecules	Ask students to link hydrogen bonding to viscosity.
1:	Knowledge Check	Content area B	All B	lintaractiva dilizzac	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Revision of content Area B		

	Physical	C1.1 Physical properties of Period 3 elements	C1.1	and structure. 3.	Starter (10 mins): Recap periodic table structure. Ask students to predict melting point trends across Period 3. Main Activity 1 (20 mins): Teacher-led discussion on Period 3 properties (e.g., sodium vs. phosphorus). Students plot melting point data. Main Activity 2 (20 mins): Paired activity: Students explain conductivity trends using bonding types (e.g., sodium conducts, sulfur does not). Plenary (10 mins): Discuss ionic radii trends, addressing misconception that they follow atomic radii patterns.	School periodic table data	Complete LibreTexts problems 3.2.13.2.5 on atomic and ionic radii. Research exceptions like graphite's conductivity.	la	Predict the physical properties of a Period 4 element based on Period 3 trends.
14	period 3	C1.1 Physical properties of Period 3 elements	(11	1. Investigate trends in period 3 elements	identified.	atomic and physical properties of period 3 elements	atomic and physical properties of period 3 elements	Supported: Provide support with practical requirements. Extension: Link to group physical properties	Exam question on physical properties of period 3.

1	Numbers 5 and Redox	C1.2 Oxidation number and redox reactions	C1.2	oxidation numbers to elements in compounds. 2. Construct and balance halfequations and	explains oxidation number rules using PCl ₅ . Students assign oxidation	hemicalAid oxidation number alculator <u>nttps://www.chemicalaid.</u> om/), LibreTexts problems (11.1.1- Q11.2.5 on redox	Q11.2.1 - Q11.2.3 on	Support: Provide a step-by-step guide for balancing halfequations. Extension: Include complex redox	Balance a redox equation in acidic
				3. Use the OIL-RIG acronym to identify oxidation and reduction.	Students construct half-equations (e.g., Fe and combine them into redox equations. Plenary (10 mins): Peer review of balance equations, addressing charge balance misconceptions.			reactions (e.g., KMnO₄ reactions).	
1	Chemical Properties of 6 Period 3 Compounds	C1.3 Chemical properties of Period 3 elements and compound s	C1.7	1. Describe reactions of Period 3 elements with oxygen, water, and chlorine. 2. Write balanced equations for Period 3 compound reactions. 3. Predict properties of Period 2/4 compounds based on Period 3 trends.	Starter (10 mins): Show a video of sodium reacting with water and ask students to predict other Period 3 reactions. Main Activity 1 (20 mins): Teacher-led demonstration (or video) of Period 3 reactions (e.g., phosphorus with oxygen). Students write equations. Main Activity 2 (20 mins): Peer teaching: Students research and present properties of one Period 3 compound (e.g., NaCl, PCl3). Plenary (10 mins): Discuss acid-bas trends in Period 3 oxides (e.g., Na2O3 vs. SO4).	Science Skool videos (https://www.youtube.com /@scienceskool4734), Chemguide notes on Period 3 reactions	one Period 3 compound and prepare a short presentation. Complete Chemguide problems on Period 3	equations for analysis. Extension: Include	Predict the reactivity of a Period 4 element with chlorine based on Period 3 trends.

17	properties of Period 3	C1.4 Physical properties of Period 3 oxides	C1.4	conductivity) of Period 3 oxides (Na ₂ O → Cl ₂ O ₇) and chlorides (NaCl → PCl ₅). 2. Relate these properties to their bonding and	Starter activity (10 mins): Display	Edexcel A-level Chemistry Revision - PMT https://periodic- table.rsc.org/	Periodic Table – Royal Society of Chemistry	Extension: Ask	Link properties to structure and bonding types.
				molecular). 3. Compare and contrast the trends in oxides and chlorides across the period.					

18	behaviour of Period 3	C1.5 AcidBase behaviour of Period 3 oxides	C1.5 C1.7	 Write balanced equations for the reactions of Period 3 oxides with acids/bases where appropriate. Relate acid- base behaviour to 	Starter activity (10 mins): Acid, Base or Both card sort of compounds into acidic, basic, amphoteric or neutral. Main activity (40 mins): Work across the periodic table of Period 3 oxides, get students to fill in a summary table. Plenary activity (10 mins): Group work using 'reaction cards' students given reactants and products, match them up and write balanced equations.	o.uk/inorganic/period3/chl orides.html#top https://www.chemguide.c o.uk/inorganic/period3/oxi	level Topic 4: Inorganic Chemistry & The	Support: Structured table to fill in Extension: Ask students to explain differences using bonding theory	Investigate environmental relevance (acid rain: SO ₂ , NO ₂). Research industrial uses of amphoteric oxides (e.g. Al ₂ O ₃ in extraction of Al)
19		C1.6 Action of water with Period 3 chlorides	C1.6 C1.7	write equations for the reactions of NaCl, MgCl ₂ , Al ₂ Cl ₆ , SiCl ₄ , and PCl ₅ with water. 2. Explain differences in behaviour using honding and	Starter activity (10 mins): Guess the reaction Give students a blank table with five rows (NaCl, MgCl ₂ , Al ₂ Cl ₆ , SiCl ₄ , PCl ₅) and columns for: Observations when added to water, pH prediction and Reaction type. Main activity (40 mins): Demonstration of each reaction, with students annotating	https://www.chemguide.c o.uk/inorganic/period3/chl	Bing Videos	Support: Provide fully balanced equations to act as model answers. Extension: Ask students to explain why PCI ₅ forms H ₃ PO ₄ rather than	Ask students to research industrial application of these reactions.

			explain why some solutions are acidic and others neutral	their tables. Students to write equations of each reaction. Plenary activity: In groups students compare their tables and use peers to make further annotations.	orides.html#top https://www.chemguide.c o.uk/inorganic/period3/oxi desh2o.html#top		H₃PO₃ on hydrolysis (link to oxidation states).	
Physical, chemical propertie of Period 3 elements and their uses	of Period 3 elements	C1.8 C1.9	melting point, ionisation energy) to predict properties of elements in other periods. 2. Explain how bonding and structure influence the physical/chemical behaviour of other	Starter activity (10 mins): Give students a partially filled Periodic Table showing atomic radius, melting points and conductivity, ask them to discuss in pairs what general trends there are. Main activity (40 mins): Guided exploration - teacher to recap trends covered across period 3. Students then to predict on period 2 and 4. Plenary activity: (10 mins) Kahoot quiz on period 3	Understanding Chemistry - Inorganic Chemistry Menu https://periodic- table.rsc.org	2-4-revision- guide-period-3- aqa.pdf		

				3. Identify key industrial and everyday uses of Period 3 elements and compounds and relate these to their properties. 1. Consolidate knowledge of content					
21	Knowledge Check	Content Area C	All C	area C 2. Apply knowledge in	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Peer review of quiz results and glossary creation (30 min).	Past paper questions Quizlet			
222	and Quantitative	D1.1 The mole and quantitativ e chemistry	D1.1	 Calculate moles, molar mass, and percentage yield. Determine empirical formulae from experimental data. Calculate gas volumes using molar volume. 	Starter (10 mins): Quick quiz on mole definitions and Avogadro's number. Main Activity 1 (20 mins): Teacher explains mole calculations with examples (e.g., mass to moles for NaCl). Address misconception about moles formula. Main Activity 2 (20 mins): Laboratory activity: Students burn magnesium to form MgO, calculate empirical formula from mass data. Plenary (10 mins): Class compares results and discusses errors in empirical formula calculations.	Lab equipment for MgO experiment, Chemguide	Brown calculation quizzes on	Support: Provide a formula triangle for mole calculations. Extension: Include percentage yield calculations with limiting reagents.	Calculate the empirical formula of a hydrate (e.g., Copper Sulfate).

23	The Mole and Quantitative Chemistry		D1.1	Exam question practice on quantitative Chemistry	Starter activity (10 mins): Recall activity of quantitative chemistry equations Main activity (40 mins): Practice	Past paper questions.	Complete Do Brown calculation	Support: Choosexam questions that are more guided	
		quantitativ e chemistry			examination questions on quantitative chemistry Plenary (10 mins): Use associated mark schemes to peer mark questions and provide feedback.		molar volume	Extension: Provide more complex examination questions	formula and mole calculations.
24	Chemical Kinetics	D1.2 Chemical kinetics	D1.2.1 D1.2.2 D1.2.3 D1.2.4	collision theory	presents Maxwell-Boltzmann curves and explains effects of temperature and catalysts. Plenary (10 mins): Discuss how catalysts affect activation	and tray for demonstration	Complete LibreTexts problems on rate laws. Watch Crash Course Chemistry video on kinetics.	Extension:	Provide flashcards on Maxwell Boltzmann

25	Chemical S Kinetics	D1. Chemical Kinetics	D1.2.5	respect to each reactant. 2. Write a full rate equation and calculate the rate constant (k) with units. 3. Use rate equations	Starter (10 mins): Introduce students to the rate equation Main activity (40 mins): Use a data set and perform a teacher led worked example Plenary (10 mins): Split students into groups each group a different reaction/dataset, ask them to deduce the orders, write the equation, calculate the rate constant.	RS0		Kine of	mical	step by worked Extensi real wo applica	d example	equa comp (e.g.,	ve the rate tion for a plex reaction xodisulfateiodide).
				concentrations change.									
26	Chemical Energetics and Hess's Law	D1.3 Chemical energetics	D1.3.1 D1.3.2 D1.3.3	changes.	Starter (10 mins): Show video clips of exothermic/endothermic reactions. Main Activity 1 (20 mins): Teacher reviews standard enthalpy definitions and symbols. Main Activity 2 (20 mins Students are given blank table templar to fill in to make a glossary of definitio and associated units. Plenary (10 mins Bingo game using definitions and associated units.	s): te ns	Lab equipment for ethat combustion, Chemguid notes on Hess's Law (https://www.chemgui o.uk/), LibreTexts problems 8.3.11-8.3.13	le <u>de.c</u>	enthalpy calculations.	n pi cy Ex n ca ss th	upport: Providure-drawn ene ycles. xtension: Inclual alculations for hermal	rgy ude	Calculate enthalpy for a reaction using bond energies and compare with Hess's Law.

27	_	Chemical	D1.3.4 D1.3.5		Starter (10 mins): Show video clips introducing Hess's Law and energy cycles Main Activity 1 (20 mins): Teacher explains Hess's Law with an energy cycle example. Address arrow direction misconception. Main Activity 2 (20 mins): Laboratory activity: Students measure standard enthalpy for combustion of ethanol and construct an energy cycle. Plenary (10 mins): Class compares calculated enthalpy values with theoretical values.	Thermodynamics AP®/College Chemistry Science Khan Academy	Hess's law (practice) Thermodynamics Khan Academy	Support: Provide pre-drawn templates with arrows already drawn in and colour coded Extension: Include enthalpies which consider stoichiometry	<u>hess law a level -</u> YouTube
	Chemical Equilibrium and Le Chatelier's Principle	Chemical	D1.4.1	Explain dynamic equilibrium and Le Chatelier's principle. Predict effects of condition changes on	Starter (10 mins): Analogy of running up a downwards escalator to explain dynamic equilibrium. Main Activity 1 (20 mins): Teacher demonstrates Le Chatelier's principle with a Co/HCl equilibrium experiment. Students	(<u>https://edu.rsc.org/</u>), LibreTexts problems on		Support: Provide a template for Chatelier Principle Extension: Use reaction where	<u>Le Chatelier's</u> <u>Principle</u>
	ı			equilibrium position.	predict shifts.	equipment for Co	Course	stoichiometry must	

29		Chemical	D1.4.3 D1.4.4 D1.4.5	equilibrium constant expressions 2. Perform calculations involving equilibrium constants 3. Interpret yield vs pressure of	introduction and practice worked	Equilibria 16–18 Resource RSC Education https://www.youtube.com/ results?search_query=kc+ kp+chemistry+worked+exa mples	to	Support: Provide a step-by-step instructions to carry out calculations Extension: Introduce the concept of Van't Hoff equation	Predict the effect of a catalyst on Kc and justify using reaction profiles.
30	Green Chemistry in Industry		D1.5 D1.6	role of kinetics, energetics, and equilibrium in industrial processes. 2. Apply green chemistry principles to evaluate industrial processes. 3. Discuss benefits and	the contact process as an example. Main Activity 2 (20 mins): Peer teaching: Students research and present one green chemistry principle (e.g., atom economy)	micalindustry.org/), RSC job profile videos (https://edu.rsc.org/)	Research the environmental impact of the Haber process and suggest green improvements. Complete Chemguide problems on atom economy.	Support: Provide a template for the presentation. Extension: Include less common processes like ammonia synthesis variants.	Propose a novel green chemistry solution for a chemical industry problem.

;	Knowledge 31 Check	Content Area D	All D	knowledge in	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Exam based questions (30 min).				
;	Introduction 32to Organic Chemistry	terms in	E1.1 E1.2	 Define key organic chemistry terms (hydrocarbons, homologous series, functional groups). Represent organic molecules using different formulae (molecular, structural, skeletal). 	Starter (10 mins): Discuss why carbon is unique in forming diverse compounds. Main Activity 1 (20 mins): Teacher presents organic chemistry terminology using alkanes and alkenes. Students draw ethane and ethene in various formulae. Main Activity 2 (20 mins): Paired activity: Students use Molymod kits to build alkanes/alkenes and name them using IUPAC rules. Plenary (10 mins): Quick naming quiz to address misconception of incorrect group priority.	Molymod kits (https://molymod.com/), Chemguide notes on organic nomenclature (https://www.chemguide.co o.uk/), LibreTexts organic chemistry basics	problems on naming organic compounds. Watch Fuse School video on	Support: Provide glossary of key terms Extension: Include branched alkanes for naming.	Name a complex molecule with multiple functional groups (e.g., 2methylbutan-1- ol).
3	Introduction 33to Organic Chemistry	E1.3 Naming molecules	E1.3 E1.5	 Naming conventions IUPAC Sigma and 	on whiteboards Main activity (40 mins): Teacher led activity on orbitals, students then model alkanes and alkenes, and have a discussion	Molymod kits (https://molymod.com/), Chemguide notes on organic nomenclature (https://www.chemguide.co.uk/), LibreTexts organic chemistry basics	an introduction to	Support: Provide IUPAC naming flowcharts. Extension: Discuss benzene and link to stability	Research sigma and pi bonds in relation to stereoisomerism

				alkenes	around double and single bon characteristics. Plenary (10 mins): Practice exam style questions		https://app.molvi ew.com/	
34	Isomerism and Physical Properties	land	E1.4 E1.6	draw structural and stereoisomers. Explain the effect of branching on boiling points. Recognize conditions for stereoisomerism in alkenes.	Students draw and name isomers and	Molymod kits (https://molymod.com/), Chemguide notes on isomerism (https://www.chemguide.co.uk/)	stereoisomerism	Draw and name stereoisomers for a complex alkene (e.g., 2-butene derivatives).

Reactions and	of organic compound	E1.7.1 E1.7.2	reactions (addition, substitution). 2. Predict products of organic reactions under given conditions. 3. Perform simple tests to	presents reaction types (e.g., alkene addition, halogenoalkane substitution) with examples. Main Activity 2 (20 mins): Laboratory activity:	Lab equipment for functional group tests, RSC practical videos (https://edu.rsc.org/), Chemguide notes on organic reactions	ľ	Support: Provide reaction templates with reagents filled in. Extension: Ask students to consider reaction mechanisms	Predict the mechanism of an electrophilic addition reaction.
Reactions and	of organic compound	E1.7.3 E1.7.4	types of organic substitution reactions. 2. Predict products of organic reactions under given conditions.	examples. Main Activity 2 (20 mins): Laboratory activity: Students test substitution	functional group tests, RSC practical videos (https://edu.rsc.org/),	problems on organic reaction equations.	Support: Provide reaction templates with reagents filled in. Extension: Ask students to consider	Predict the mechanism of a nucleophilic substitution reaction.
			3. Perform simple tests to identify functional groups.	Plenary (10 mins): Discuss test results and write balanced equations		on functional group tests.	reaction mechanisms	

37	Reactions and	of organic compound	E1.7.5	101 01111111111111111111111111111111111	Starter (10 mins): Guess the reaction - put the start of 3 reactions on the board and ask students to complete them. Main Activity 1 (20 mins): Teacher presents reactions giving products and conditions. Main Activity 2 (20 mins): Students draw and name products in elimination reactions. Plenary (10 mins): Student complete a quickfire quiz reviewing the different reactions covered so far.	Lab equipment for functional group tests, RSC practical videos (https://edu.rsc.org/), Chemguide notes on organic reactions	Complete Chemguide problems on organic reaction equations. Watch RSC video on functional group tests.	Support: Provide lower-level reactions in the worksheet Extension: Ask students to predict reaction mechanisms	Students to complete a mindmap of different organic reactions and how they interlink.
38	Reactions and	of organic compound	E1.7.6 E1.7.7	 Describe conditions for the oxidation of primary alcohols to carboxylic acids. Write balanced equations, name, and draw products from alcohol oxidation reactions. Describe conditions for esterification reactions 	Starter (10 mins): Show a video fo colour change reaction of ethanol and acidified potassium dichromate being heated under reflux. Students to suggest what is happening. Main Activity 1 (20 mins): Teacher presents oxidation of primary alcohols and students complete worksheet activity entering products of the reaction. Main Activity 2 (20 mins): Teacher can demonstrate esterification reaction and get students to comment on reaction and complete balanced equations.	and structural equations) Mini-whiteboards and pens (Optional) Practical kit: ethanol, ethanoic acid,	Review information on https://www.che mguide.co.uk/org anicprops/alcoho ls/oxidation.html	Support: Provide scaffolded equations with structures predrawn Extension: Get students to think about secondary alcohol oxidation	Students to research industrial uses of esters

					Plenary (10 mins): Students to discuss ways to distinguish ethanol from ethanoic acid.				
39	Organic	of Commerci	E1.8.1 E1.8.2	combustion. 2 Evaluate use	Starter (10 mins): Discuss the importance of poly(ethene) in daily life. Main Activity 1 (20 mins): Teacher presents cracking and combustion with equations. Main Activity 2 (20 mins): Peer teaching: Students research and present benefits and issues of one organic compound (e.g., ethanol). Plenary (10 mins): Class discusses solutions to environmental issues (e.g., biodegradable polymers).	Essential Chemical Industry notes (https://www.essentialche micalindustry.org/), Chemguide notes on polymerisation	environmental impact of CFCs and propose alternatives. Complete Chemguide problems on	Extension: Include	Design a sustainable process for producing a polymer like PLA.
40	Commerciall y Important Organic	of Commerci	E1.8.4		Starter (10 mins): Discuss the importance of poly(ethene) in daily life. Main Activity 1 (20 mins): Teacher presents polymerisation with equations (e.g., ethene polymerisation). Main Activity 2 (20 mins): Peer teaching: Students research and present benefits and issues of one organic compound (e.g., ethanol). Plenary (10 mins): Class discusses solutions to environmental issues (e.g., biodegradable polymers).	Essential Chemical Industry notes (https://www.essentialche micalindustry.org/), Chemguide notes on polymerisation	Research the environmental impact of CFCs and propose alternatives. Complete Chemguide problems on polymerisation.	Extension: Include	Design a sustainable process for producing a polymer like PLA.

Green 41 Chemistry in Industry	Green	E1.9 E1.10	combustion of fuels (CO ₂ emissions, acid rain, energy production). 2. Explain the environmental impact of halogenoalkanes (CFCs) and ozone depletion. 3. Evaluate the pros and cons of polymers, including recycling and disposal	Starter (10 mins): Headline hunt - provide a relevant headline on real world chemistry application. Allow students to discuss. Main activity (40 mins): Teacher splits students into groups and give each group a different reaction to looks at, eg, combustion, CFCs, plastics, ethanol. Each group will then research and present their reaction equations, benefits, problems, and possible solutions or alternatives. Plenary (10 mins): Each student to review all of the presentations and give a brief 2 sentence review of the one they		Research the Montreal Protocol	Support: Provide cards with key facts on it to help support discussion Extension: Consider equations around hydrogen fuels or carbon neutral synthetic fuels.	Use NASA to consider current status of the Ozone Hole https://ozonewatc h.gsfc.nasa.gov/Scripts/big_image.php?date=2025-0904&hem=S§ion=HOME
--------------------------------------	-------	---------------	---	--	--	--------------------------------------	---	---

Unit 3: Principles and Applications of Physics

Learning Activities and Resources

This section offers a preview of how a scheme of work may be designed for this unit. It includes suggestions for each aspect of the specification, and suggested resources to coincide with the teaching and learning planner activities and resources. Both resources can be used alongside each other or in isolation.

Please note that the suggestions provided below are suggestions and are not mandatory, this resource is to support delivery of the qualification.

No	Lesson Title	Lopic	Spec Ref	Learning Objectives	Learning Tasks & Activities	Resources	ISelf-Directed Study	Differentiation & Stretch/Challenge
1		A1: Working with Waves	A1.1 A1.2 A1.4	Define wavelength, frequency, amplitude, period; Describe transverse & longitudinal	Starter (10 mins): Short video clips of water & sound waves – spot differences. Main (main activity): Teacher demo with slinky for both wave types; students sketch & label diagrams; derive v=f\(\lambda\); practice problems. Plenary (10 mins): Whiteboard quiz matching terms to definitions.	Slinky, projector, worksheet	Create flashcards & practice wave equation calculations.	

2	nλ	A1.3 Working with Waves	A1.3.2 A1.3.3	 Define coherence, phase/path difference; Explain interference; Use diffraction gratings to measure λ 	destructive interierence diagrams,	Ripple tank, diffraction gratings, protractors, light sources	Attempt exam practice questions - refer to mark scheme and examiner report where appropriate.	Support: Provide worked example for λ calculation. Extension: Discuss higher-order diffraction orders.
3	grating	A1.3 Working with Waves	A1.3.2	Using practical activity to demonstrate diffraction gratings	billigo doning hey termo	Bingo cards, fluorescent lamp, LED, sodium lamp.	Practical write up and conclusion	Support: Provide a framework for conclusion to the experiment Extension: Apply practical activity to industrial applications
4	Working with Waves	A1.4 Using the wave equation	A1.4	1. Apply the wave equation	Starter (10 mins): Recap on wave equation Main activity (40 mins): Practice exam style questions on wave equation Plenary (10 mins): Discussion around coherence phase and path difference	Past exam naner	Review mark scheme and any associated examiner reports	Support: Choose shorter open response questions Extension: Choose extended open response questions
5	WANES XI	A1.5 Working with Waves	A1.5.1 A1.5.2	 Describe stationary wave formation; Identify nodes/antinodes; calculate v=V(T/μ). 	Starter: (10 mins) Guitar clip – ask students to predict effect of tension/length.	Signal generator, masses, resonance tube, worksheets	Review notes on resonance https://puppeteer.cognitoed u.org/coursesubtopic/p3-alevel-aqa_amSeXKLS	Support: Scaffolded data tables.

					Main (40 mins): Practical with Melde's apparatus/resonance tube; measure length, frequency, tension; calculate v;			Extension: Calculate theoretical frequencies
					discuss applications in music. Plenary (10 mins): Annotate stationary wave diagram.			for first 3 harmonics & compare to results.
6		A2: Behaviour of Waves	A2.1 A2.2 A2.3	 Calculate refractive index & critical angle; Explain TIR & its uses. 	Starter (10 mins): Demo laser into water tank – predict ray path. Main (40 mins): Practical measuring I and R with ray boxes & glass blocks; calculate n & critical angle; discuss optical fibre uses. Plenary (10 mins): Create a mind map linking TIR to medical and communication uses.	Ray boxes, glass blocks, protractors	Research refractive indices of common materials.	Support: Provide blank ray diagrams. Extension: Research modal dispersion & fibre optic losses.
7	Ontical	A2: Behaviour of Waves	A2.2 A2.3	 Describe the principle of total internal reflection and how optical fibres transmit signals. Explain key applications of optical fibres in 	Starter (10 mins): Student light in a tube demonstration (shine a laser pointer through a stream of water) Main activity: (40 mins): Split into 3 groups each group to research medical applications, communication applications and engineering or industrial applications.	Laser pointer or optical fibre demonstration kit Internet-enabled devices for research Oscilloscope traces or images (analogue vs digital)	Bending Light - Snell's Law Refraction Reflection - PhET Interactive Simulations	Support: Provide labelled optical fibre diagrams Extension: Introduce the concept of multiplexing and bandwidth.

					Plenary (10 mins): Students to produce a 30 second 'elevator pitch' to 'sell' one of the researched applications.	· ·		
8	EM Waves & Communica tion	A3: EM Spectrum	A3.2	of EM waves 2. Discuss communication applications.	Starter (10 mins): EM spectrum quick sort (order by λ or f). Main (40 mins): Students complete table: wave → wavelength range → uses →	·	Make revision poster of EM spectrum.	Support: Provide partially completed tables.
					hazards; group research on mobile phone safety or satellite comms; mini presentations. Plenary (10 mins): Quiz on uses/hazards.			Extension: Discuss bandwidth, data transfer rates.
)	EM Waves & Communica tion	A3: EM Spectrum	A3.2	1. Practical investigation of light intensity	perform practical activity on light	https://www.youtube.co m/watch?v=US- cdZNAEhg	Explain how this practical may be applied to stars and/or a microwave.	Support: Provide scaffolded template for conclusion Extension: Provide extension suggestions for the practical and predict associated outcomes.

10	Knowledge Check	Content Area A	All A	interactive duizzes.	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Exam based questions (30 min).	Past paper questions Quizlet	Revision of Content Area	
11	Forces & Motion	R1 · Motion	B1.1 B1.2	Describe key standard units Calculating speed practical Calculate speed	Starter (10 mins): Matching standard units to applications. Main (40 mins): Calculate speed of trolleys down a ramp; use equations of motion. Plenary (10 mins): Solve short examstyle problem on speed/time		Practice problems online (Physics & Maths Tutor).	Support: Provide formula triangles. Extension: Derive equations from definitions.
12	Forces & Motion	B1: Motion	B1.3	 Describe key scalar and vector quantities Discuss scalars and vectors Use velocity time graphs 		Trolley ramp, light gates, data logger	Research industrial application of accelerometers - provide a 5 min presentation	Support: Provide formula triangles Extension: Provide suggestion to extend the practical investigation.
13	Newton's Laws & Momentum	B2: Newton's Laws	B2.1	1. Apply Newton's First Law	discussion on Newton's First Law	https://www.youtube.co m/watch?v=_W3VbonF Ncw	Practice questions from Pearson SAMs.	Support: Step-by-step worked examples Extension: Distinguish elastic vs inelastic

								collisions mathematically.
	Newton's 4 Laws & Momentur	Laws	D2 2	change in motion. 2. Define gravitational field strength, g and explain its meaning. 3. Use $W=mg$ to calculate weight from mass	Starter (10 mins): Teacher demo, place a card on top of a beaker with a coin on top, flick the card horizontally - coin drops into a beaker. Main (20 mins): Students work in groups to review instances of inertia. Main (20 mins): Students to perform exam style questions on W=mg	Beaker, playing card, coin (starter demo), Whiteboard/interactive board Data table of g on different planets (NASA website) Worksheets for W=mg calculations (differentiated)	Write a short report on why astronauts experience weightlessness in orbit despite gravity still acting on them	Support: Provide formula triangles Extension: Provide more advanced exam style questions
:	Newton's .5 Laws & Momentur	B2: Newton's Laws	B2.3	measuring the minimum force required to start		logger, Masses (to vary normal force), Smooth surface (lab bench), Worksheets (data table	Review and making flashcards using http://hyperphysics.phy- astr.gsu.edu/hbase/frict.htm	Support: Provide precalculated N for each block to reduce maths load Extension: Explore additional variables, e.g. surface area or different materials.

				and normal reaction (N = mg).				
16	Newton's Laws & Momentum	B2: Newton's Laws	B2.4	velocity. 2. Use the equation $p = mv$ to calculate momentum for objects. 3. Interpret momentum values in real-life contexts (safety, collisions, sports).	Main activity (40 mins): Worked example of the equation with teacher leading demonstration, then guided	Worksheets, mini whiteboards, video clips	Collision Lab - Collisions Conservation of Energy Conservation of Momentum - PhET Interactive Simulations	Support: Provide formula triangles and simple numbers to start Extension: Introduce vector direction.
	Newton's Laws & Momentum	B2: Newton's Laws		2. State & use	Starter (10 mins): Concept cartoon (e.g. rocket in space) – discuss forces. Main (40 mins): Practical: collisions on air track; calculate momentum before &		acceleration in the same	Support: Provide formula triangles and simple numbers
				momentum.	after; verify conservation. Plenary (10 mins): Whiteboard Q&A linking each law to real example.		and Energy Physics - 0625 - Supplement Cambridge IGCSE Sparkl	Extension: Discuss real time applications where this calculation is used.
18	Newton's		B2.6	1. Define Newton's Third Law		https://www.youtube.co	https://www.bbc.co.uk/bites	

	Laws & Momentum	B2: Newton's Laws		Newton's Third Law 3. Discuss practical applications of Newton's Third Law	introduction into the Third Laws of Motion Main activity (40 mins): Practical activity on Newtons Third Law of	m/watch?v=BWIEpMgaS YM https://www.youtube.co m/watch?v=eU3ULRgS8 Vk	ize/guides/zgv797h/revision/ 1	Support: Provide scaffolded practical investigation template Extension: Students to discuss real-time application of Newton's Third Law
	Laws &	B2: Newton's Laws	B2.7	2. Investigate applications of Drag and Air Resistance3. Discuss practical applications of Drag and Air	Starter (10 mins): Students to recall Newton's Third Law of Motion Main activity (40 mins): Practical activity on air resistance and drag Plenary (10 mins): Conclusions on practical activity applying to industrial applications.	Resources	https://www.youtube.com/w atch?v=eYuvWQ-O_eM	Support: Provide scaffolded practical investigation template Extension: Students to apply concept to exam style questions
20	Knowledge Check	Core Content B	All B	interactive quizzes.	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min).	Past paper questions Quizlet	Revision of content area B	

21		electrical	C1.1 C1.2	circuit symbols and draw simple series/parallel circuits. 2. Define current,	Starter (10 mins): Students are shown symbols and then given bingo cards to match symbols. Main activity (40 mins): Teacher led discussion on key terms. Students then to use vocabulary and set up basic circuits. Plenary (10 mins): Whiteboard quiz activity testing key symbols and definition.	Circuit symbol flashcards Printed bingo cards Whiteboard or interactive board Worksheet: definitions & unit matching Mini whiteboards for plenary Circuit set up for practical activity	Resistance - Current, voltage and resistance - 4th level Science Revision - BBC Bitesize	Support: Provide word bank and pre-drawn symbols to label Extension: Students to design circuits for different specified purposes.
22		oloctrical	C1.3 C1.4	1. Define current, potential difference, resistance 2. Use V=IR.	Starter (10 mins): Circuit symbol matching game. Main (40 mins): Build series circuit; measure I & V; plot I-V graph; discuss ohmic behaviour. Plenary (10 mins): Students explain Ohm's law in own words.	Power supplies, resistors, multimeters	https://www.youtube.com/w atch?v=hfj1A9T6OIA	Support: Pre-built circuits for weaker students. Extension: Test filament lamp & diode I-V curves.
23	Series & Parallel Circuits	C2: Equations	C2.1.1 C.2.1.2	 Determine resistivity; Calculate electrical power and energy. 	Starter (10 mins): Recap V=IR with quick problems. Main: Build series & parallel circuits, measure currents & voltages; compare with theoretical values. Plenary: Students answer exam-style question comparing the two circuit types.	Circuit boards, meters	Practice questions on series/parallel circuits.	Support: Provide step- bystep calculation examples. Extension: Set up mixed circuit (series-parallel combination).

24	Power and Energy	(). Failations	C2.1.3 C2.1.4	 Define power as the rate of energy transfer. Use P = Et to calculate power given energy and time. Use E = VIt to calculate 	terms of power. Student discussion. Main activity (40 mins): Teacher led discussion into power and electrical energy. Students work through worksheet with progressively harder problems. Plenary (10 mins): Students to complete one final challenge and	board notes Mini whiteboards & markers Printed worksheet	Energy, work and power - IGCSE Physics - BBC Bitesize	Support: Provide formula triangles, scaffolded multi-step problems. Extension: Introduce the idea of wasted energy and link to national grid.
25	energy	C3: Electrical energy usage	C3.1 C3.2 C3.3	 Identify typical power ratings of domestic appliances and calculate their energy usage. Select appropriate fuse ratings for appliances based on current drawn. Calculate energy transferred in kWh and cost of running an appliance 	Main activity (20 mins): Students calculate the power of different devices and discuss appropriate fuse rating. Main activity (20 mins): Students given worksheet on calculating cost of energy and calculate daily/weekly costs.	usage + fuse rating calculations)	Circuit Construction Kit: DC - Series Circuit Parallel Circuit Ohm's Law - PhET Interactive Simulations	Support: Provide formula triangles, scaffolded multi-step problems. Extension: Introduce the idea of smart meters and relate to customer usage.

7	26	C4: Energy transfer	C4.1 C4.2 C4.3	1. Define energy in joules (J), convert between joules, kilojoules, and megajoules. 2. Convert between Celsius (°C) and Kelvin (K). 3. Describe energy transfer when heating/cooling substances or during state change	Main activity (20 mins): Teacher led	Conversion worksheet Heating curve diagram (blank and annotated versions)	States of Matter - Atomic Bonding Interaction Potential States of Matter - PhET Interactive Simulations	Support: Provide scaffolded conversion sheet Extension: Introduce concept of latent heat.
2	27	C4: Energy transfer	C4.4	1. Perform specific heat capacity practical	specific heat capacity equation	AQA - GCSE Physics (Single Science) Revision - AQA - BBC	https://www.tes.com/teachi ng-resource/specific-heat- capacity-11978694	Support: Provide scaffolded practical procedure sheet Extension: Discuss applications of where calculations may be useful in industry

28		•	C5.2	latent heat and distinguish between fusion and vaporisation. 2. Describe experimental methods to measure specific latent heat of fusion (melting ice) and vaporisation (boiling water). 3. Use Δ <i>Q</i> = <i>mL</i> to calculate thermal energy for	Starter (10 mins): Why does the temp stay the same? Show a short clip of heating water - discussion around when temperature remains constant. Main activity (10 mins): Introduction of latent heat equation and explanation Main activity (30 mins): Practical investigation on latent heat of fusion, or latent heat of vaporisation Plenary (10 mins): Use whiteboards for quick answer questions, and one real world application of latent heat.	Thermometers	Research application of latent heat in appliances	Support: Provide template for practical activity, potential for some results pre-entered Extension: Potential to introduce efficiency calculations.
29	Knowledge Check	Content Area C	All C	 Consolidate knowledge of content area A Apply knowledge in interactive quizzes. Review key concepts through peer discussion. 	Individual activity: Complete quizzes on Quizlet or Kahoot (30 min). Exam based questions (30 min).	Past paper questions Quizlet	Revision of content area C	
30	Review & Exam Practice	Consolidation	spec	electricity; apply to exam- style problems.	Starter (10 mins): Retrieval quiz (10 Q's covering all content). Main activity (40 mins): Mock test in timed conditions; peer-mark with mark scheme; identify weak areas. Plenary (10 mins): Students write one strength and one target for improvement.		Focused revision on weakest topics.	Support: Provide lower demand questions Extension: Attempt higher-demand questions

September 2025

For information about Pearson Qualifications, including Pearson Edexcel and BTEC qualifications visit <u>qualifications.pearson.com</u>

Edexcel and BTEC are registered trademarks of Pearson Education Limited

Pearson Education Limited. Registered in England and Wales No. 872828 Registered Office: 80 Strand, London WC2R ORL.

VAT Reg No GB 278 537121