

(GCSE Mathematics - HT) Year 11 Long Term Plan

Rationale (with end points): Year 11 is for students to practise their retrieval of the past 2 years of content. Students look at the 4 main areas of maths and use these skills to help solve problems solving questions and develop their mathematical reasoning

Term	Торіс	Knowledge	Skills	Reading /wider reading
Term Autumn term 1	Topic Unit 16: Circle theorems	 Knowledge Circle theorems Circle geometry 	 Skills Recall the definition of a circle and identify (name) and draw parts of a circle, including sector, tangent, chord, segment; Prove and use the facts that: the angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference; the angle in a semicircle is a right angle; the perpendicular from the centre of a circle to a chord bisects the chord; angles in the same segment are equal; alternate segment theorem; opposite angles of a cyclic quadrilateral sum to 180°; Understand and use the fact that the tangent at any point on a circle is perpendicular to the radius at that point; Find and give reasons for missing angles on diagrams using: circle theorems; isosceles triangles (radius properties) in circles; the fact that the angle between a tangent and radius is 90°; the fact that tangents from an external point are equal in length. Select and apply construction techniques and understanding of loci to draw graphs based on circles and perpendiculars of lines; Find the equation of a tangent to a circle at a given point, by: finding the gradient of the radius that meets the circle at that point (circles all centre the origin); finding the gradient of the tangent perpendicular to it; 	Reading /wider reading The Simpsons and Their Mathematical Secrets by Simon Singh
			 using the given point; Recognise and construct the graph of a circle using x² + y² = r² for radius r centred at the origin of coordinates. 	

	Unit 17: More Algebra	 Changing subject of formulae (more complex) Solving equations from algebraic fractions Rationalise surds Proof 	 Rationalise the denominator involving surds; Simplify algebraic fractions; Multiply and divide algebraic fractions; Solve quadratic equations arising from algebraic fraction equations; Change the subject of a formula, including cases where the subject occurs on both sides of the formula, or where a power of the subject appears; Change the subject of a formula such as 1/f = 1/u + 1/v, where all variables are in the denominators; Solve 'Show that' and proof questions using consecutive integers (n, n + 1), squares a², b², even numbers 2n, odd numbers 2n +1; Use function notation; Find f(x) + g(x) and f(x) - g(x), 2f(x), f(3x) etc algebraically; Find the inverse of a linear function; Know that f⁻¹(x) refers to the inverse function; For two functions f(x) and g(x), find gf(x). 	
Autumn 2	Unit 18: Vectors and geometric proof	 Vectors and geometric reasoning 	 Understand and use vector notation, including column notation, and understand and interpret vectors as displacement in the plane with an associated direction. Understand that 2a is parallel to a and twice its length, and that a is parallel to -a in the opposite direction. Represent vectors, combinations of vectors and scalar multiples in the plane pictorially. Calculate the sum of two vectors, the difference of two vectors and a scalar multiple of a vector using column vectors (including algebraic terms). Find the length of a vector using Pythagoras' Theorem. Calculate the resultant of two vectors. Solve geometric problems in 2D where vectors are divided in a given ratio. Produce geometrical proofs to prove points are collinear and vectors/lines are parallel. 	Seventeen Equations that Changed the World by Professor Ian Stewart

and graphs	 Recipical and exponential graphs Gradients under graphs Direct and inverse proportion 	 Recognise, sketch and interpret graphs of the reciprocal function y = ¹/_x with x ⁴/_x 0 State the value of x for which the equation is not defined; Recognise, sketch and interpret graphs of exponential functions y = k^x for positive values of k and interpret graphs of exponential functions y = k^x for positive values of k and interpret graphs of functions and write the functions algebraically, e.g. write the equation of f(x) + a, or f(x - a): apply to the graph of y = f(x) the transformations y = -f(x), y = f(x) for linear, quadratic, cubic functions; apply to the graph of y = f(x) the transformations y = f(x) + a, y = f(x + a) for linear, quadratic, cubic functions; Estimate area under a quadratic or other graph by dividing it into trapezia; Interpret the gradient of linear or non-linear graphs, and estimate the gradient of a quadratic or non-linear graph at a given point by sketching the tangent and finding its gradient; Interpret the gradient of non-linear graph, estimate the speed at one point in time, from the tangent, and the average speed over several seconds by finding the gradient of the chord; for a non-linear velocity-time graph, estimate the acceleration at one point in time, from the tangent, and the average acceleration over several seconds by finding the gradient of the chord; Interpret the gradient of a linear or non-linear graph in financial contexts; Interpret the area under a linear or non-linear graph in graph in cellific contexts; Interpret the area of thange of y = for a non-linear graph, estimate the acceleration at one point in time, from the tangent, and the average acceleration over several seconds by finding the gradient of the chord; for a non-linear velocity-time graph, estimate the acceleration at one point in time, from the tangent, and the average acceleration over several seconds by finding the gradient of the chord; Interpret the area under a l
------------	---	---

	 Write statements of proportionality for quantities proportional to the square, cube or other power of another quantity; Set up and use equations to solve word and other problems involving direct proportion; Use y = kx to solve direct proportion problems, including questions where students find k, and then use k to find another value; Solve problems involving inverse proportion using graphs by plotting and reading values from graphs; Solve problems involving inverse proportionality; Set up and use equations to solve word and other problems involving direct proportion or inverse proportionality;
Spring 1	Exam preparation
Spring 2	Exam preparation
Summer 1	Exam preparation & Exams
Summer 2	Students not present after exams